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internal space. We investigate suitable local geometries for the hidden and visible sector

in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces

realized in compact geometries after geometric transition. We construct compact examples

admitting the key properties to realize flux supersymmetry breaking and U(1) mediation.

Their toric realization allows us to analyze the geometry of curve classes and confirm the

topological connection between the hidden and visible sector.
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1. Introduction

The embedding of the standard model and its supersymmetric extensions into string the-

ory is of crucial importance in the study of string phenomenology. One promising arena

for model building are Type II string compactifications with gauge theories realized on

intersecting D-branes extending along the four non-compact dimensions [1]. Particularly

appealing are scenarios for which the visible gauge theory and matter interactions can be

localized within the internal space. Some crucial parts of the four-dimensional physics, such

as the gauge group and matter content, are then determined by the local geometry near

the intersecting standard model branes. This opens the door for concrete model building

within a well-defined local framework [1 – 4].

In addition to the strings confined to the standard model branes, there will be string

states which propagate through the bulk and interact with hidden sectors which are sep-

arated from the visible branes within the internal space. In particular, supersymmetry

breaking occurring in a hidden sector can be mediated to the visible branes via such mes-

sengers. There are essentially two categories for the mediation of supersymmetry breaking.

Firstly, it can be mediated via gauge theory degrees of freedom which arise from open

strings in Type II compactifications [5, 6]. Secondly, the mediation can occur due to closed

string modes with Planck mass suppressed couplings [6]. The latter category includes the

anomaly mediation scenarios arising from the gravitational sector [7]. In contrast to the

universal anomaly mediation, the contributions of gauge and Planck suppressed mediation

typically depend on the geometry and distances probed by the messengers between the

visible and hidden sector. Different geometric set-ups can lead to a domination of one or

the other mediation mechanism.

In this paper we investigate a string theory embedding of a mediation mechanism

involving a U(1) vector multiplet. If this vector multiplet is coupling to both the visible

as well as some hidden supersymmetry breaking sector, it can serve as a messenger of

the breaking. The phenomenological aspects of such scenarios depend on the role of the

U(1) in the visible sector. Concrete proposals use the possible existence of additional U(1)

vectors, known as Z ′ gauge bosons, which couple to the Standard Model [8]. Mediation of

supersymmetry breaking involving such extra U(1) multiplets has been studied in various

contexts in refs. [9, 10]. Another recent proposal is to identify the mediating U(1) with the

hypercharge of the MSSM [11]. Viable soft supersymmetry breaking terms are generated if

the bino gains a mass from supersymmetry breaking in the hidden sector in addition to the

anomaly mediation contribution to all soft terms. Set-ups with soft terms induces by U(1)

mediation or anomaly mediation exhibits a number of very attractive phenomenological

features such as natural suppression of CP- and flavor violation and a solution of the µ

problem.
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In this work we specify a concrete Type IIB string compactification with the appro-

priate U(1) couplings and mechanism to break supersymmetry. More precisely, we argue

that supersymmetry breaking due to non-vanishing R-R and NS-NS background fluxes can

be naturally mediated by U(1) vector multiplets. The messengers arise as linear combina-

tions of hidden and visible sector U(1)H and U(1)V vector multiplets. The coupling of the

U(1)H and U(1)V is obtained from a gauging of a R-R scalar, similar to mechanism recently

studied in ref. [12] applying the idea of [13]. However, in our set-ups the hidden U(1)H
gauge fields arise from the R-R four-form and pair in the underlying N = 2 theory with

the complex structure deformations of the internal manifold into supermultiplets. Exactly

these scalars obtain an F-term in a non-supersymmetric flux background [14], and therefore

render the U(1) gauginos massive. We show that simple topological relations connecting

the visible and hidden sector within the internal space will ensure the generation of soft

supersymmetry breaking terms for the standard model fields. In particular, we discuss

how candidate internal geometries are constructed as non-Kähler resolutions of a singular

Calabi-Yau manifolds.

Supersymmetry breaking by background fluxes has been investigated since the advent

of flux compactification [15]. In particular, soft supersymmetry breaking terms induced by

Planck suppressed moduli mediation have been first computed in refs. [16]. It thus has to

be argued that the U(1) mediation will lead to a visible effect on the low energy masses.

In general, direct couplings can be suppressed if the hidden supersymmetry breaking flux

sector is separated, or rather ‘sequestered’ [7], from the standard model branes. This will be

the case for set-ups where supersymmetry is broken by fluxes near a deformed singularity

hidden in a warped throat away from the visible sector [18]. This does however still permit

that the soft terms are corrected due to anomaly mediation, which yields to a mixture

of two contributions as in the scenarios of refs. [17, 11]. Simple supersymmetry breaking

flux backgrounds on a deformed Calabi-Yau singularity have been constructed in refs. [19],

and argued to be large-N dual to meta-stable systems of D5 and anti-D5 branes. The

orientifold versions of these models can serve as a hidden sector in our compactifications.

Even though our analysis is more general and explicit, specific flux vacua will realize the

large N dual of the U(1) mediation scenario of ref. [12].

In the construction of compact examples we need to ensure that both a visible brane

sector as well as a hidden supersymmetry breaking sector can be realized. Geometrically

this is achieved by picking Calabi-Yau manifolds with the appropriate singularities. The

singularities are then resolved or deformed to yield a smooth compact internal manifold

permitting U(1) mediation. In particular, this will lead us to the study of del Pezzo

singularities and their resolutions. A del Pezzo surface is of real dimension 4 and has

a sufficiently substructure to support intersecting branes inducing a spectrum and gauge

group of a MSSM like model [3]. We will focus on the del Pezzo surfaces which are

obtained by blowing up P
2 at 5, 6, 7 or 8 points. The blow up process and the specification

of appropriate orientifold projections will be described in detail.

In order to find an explicit realization of the U(1) scenario, we have to be able to check

the topological connection between the hidden and visible sector. We will argue that this

is possible by analyzing the global embedding of the del Pezzo surface into the compact
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space. The computation of the BPS invariants for concrete torically realized examples

reveals a decisive criterion to analyze which of the two-cycles in the del Pezzo surface are

non-trivial in the compact space and connected to the hidden sector. Since the geometry of

del Pezzo surfaces is captured by Lie algebras, this criterion can be reformulated in terms

of the decomposition of Lie algebra representations.

This paper is organized as follows. In section 2 the general mechanism of U(1) mediated

supersymmetry breaking and our sting theory embedding is summarized. This includes in

section 2.1 a brief overview of the phenomenological properties of the scenarios suggested

in refs. [10, 11]. In section 3 we discuss the basics on constructing the necessary internal

geometries as well as the corresponding N = 1 four-dimensional effective theories. The

relevant non-Kähler resolutions are introduced in section 3.1. The N = 1 orientifold pro-

jection as well as details on the effective action are presented in section 3.2. The candidate

visible sectors arise from del Pezzo surfaces as discussed in section 3.3, while the hidden

sector flux geometry inducing the supersymmetry breaking are studied in section 3.4.

In the second part of this work we turn to explicit geometrical constructions of the

outlined set-up. The hidden geometry are orientifolds of An singularities introduced in

section 4.2. More effort is devoted to the study of del Pezzo transitions in compact Calabi-

Yau spaces. We analyze a large class of candidate internal manifolds in section 4.3 and 4.4,

and discuss their orientifold symmetries. A compact manifolds with associated orientifold

projection admitting most of the desired properties to permit U(1) mediation is constructed

in section 5. The toric construction of the compact geometries as well as further explicit

examples are provided in appendices A and B.

2. U(1) mediation of supersymmetry breaking

In this section we first describe the general mechanism how a U(1) vector multiplet coupling

to both a hidden as well as a visible sector can mediate supersymmetry breaking. We briefly

discuss in section 2.1 the phenomenological implications in case this U(1) coupling is one

of the dominant mediation mechanisms. The general idea how to realize such a scenario

within a flux compactification of type IIB string theory will be presented in section 2.2.

2.1 The mediation mechanism and its phenomenology

Let us consider a four-dimensional N = 1 supersymmetric theory consisting of a visible

MSSM-like sector with Lagrangian Lvisible and a hidden sector Lhidden. We denote the

bosonic components of the supermultiplets in the visible sector collectively by Q, while

they are denoted by Φ for the hidden sector. Supersymmetry breaking is assumed to take

place in the hidden sector. The U(1) mediation of this breaking is possible if the field

dependence of the effective low energy Lagrangian is of the form

Leff = Lvisible(Q,A) + Lhidden(Φ, A) , (2.1)

where A is a U(1) gauge boson in a vector multiplet coupling to both the visible and hidden

sector. Generically both the hidden and visible sector will contain fields charged under A.
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The holomorphic gauge kinetic coupling function of A will be denoted by f(φ) and will

depend on the hidden sector chiral multiplets collectively denoted by φ.

Consider now supersymmetry breaking by a non-vanishing F-term in the hidden sector.

The coupling of A to the hidden sector can yield a significant contribution M̃ to the mass

of the fermion λ in the vector multiplet (A,λ). Recall that in an N = 1 supersymmetric

theory, the gauge kinetic term for the superfield W containing (A,λ) is given by

Lkin(W ) =

∫

dθ2 1

4
f(φ)WαWα + c.c. . (2.2)

The F-terms in the hidden sector are denoted by FI , F I and take the form

FI = DφI W , F I = eK/2KIJ̄ F̄J̄ . (2.3)

Here φI are complex scalars in the chiral multiplets, W is the holomorphic superpotential,

and K,KIJ̄ are the Kähler potential and inverse Kähler metric. It follows from (2.2) that

the fermion λ in the multiplet of the vector A acquires a mass

M̃ = F I∂φI log(Ref) . (2.4)

The presence of the massive fermion λ coupling to the visible sector can have a profound

impact on the observed supersymmetry breaking phenomenology.

In a generic string compactification with non-vanishing F-terms also other mediation

mechanism can contribute to the soft parameters in the visible sector. Clearly, it needs to

be ensured that additional gauge interactions between the two sectors are subdominant.

More severely, gravity mediation can contribute to the soft parameters of order FI/MP . In

the string compactifications we will consider later, these contributions can be suppressed

due to sequestering [18]. The dominant supergravity contribution then arises from anomaly

mediation. In section 2.1.1 a mixing of U(1) mediation with anomaly mediation is illus-

trated for the specific model proposed in ref. [11].

To illustrate the phenomenological implications of U(1) mediation we will briefly review

two recently proposed scenarios. In the first scenario the vector A is the hypercharge U(1)Y
of the MSSM [11], while in the second scenario it corresponds to an additional U(1)′ under

which all MSSM particles are charged [8 – 10]. This overview is also meant to highlight the

generic features which are eventually demanded from a string realization.

2.1.1 Hypercharged anomaly mediation

In reference [11] it was proposed to identify A with the hypercharge U(1)Y of the MSSM.

It was assumed that the only source of supersymmetry breaking is a non-vanishing hidden

sector F-term in (2.4) and the contributions due to anomaly mediation [7]. The mass M̃

in (2.4) will contribute to the bare bino mass. This is the decisive change of boundary

conditions fed into the bino renormalization group equation running from the compactifi-

cation scale to low energies. The breaking scale of anomaly mediation is set by the gravitino

mass m3/2 = eK/2|W |. The gaugino masses M1,M2,M3, the soft masses mi as well as the

– 5 –
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Yukawa couplings Aijk in the visible sector are then given by

M1 = M̃ +
b1g

2
1

8π2
m3/2 , Ma =

bag
2
a

8π2
m3/2, a = 2, 3 ,

m2
i = −

1

32π2

dγi

d log µ
m3/2 , Aijk = −

γi + γj + γk

16π2
m3/2 ,

(2.5)

where ba are the β-function coefficients, and γi are the anomalous dimensions of the matter

fields. The gi are the three gauge couplings of the MSSM.

The difference of the soft terms (2.5) to the ones arising in general gauge mediation

scenarios [5] is that the supersymmetry breaking in the hidden sector only contributes at

leading order to the bino mass M1. The other soft masses are identical to the ones obtained

for the anomaly mediation scenario. It was shown in ref. [11], that only for certain values

of M̃ the renormalization group equation flow yields an acceptable low energy spectrum,

M̃ ≡ α m3/2 , 0.05 . |α| . 0.25 , (2.6)

for m3/2 & 35 TeV. In an explicit string realization of this scenario the supersymmetry

breaking mechanism in the hidden sector has to induce F-terms generating an M̃ satisfying

the bound (2.6).

2.1.2 Mediation by an additional U(1)′

In this section we briefly review a scenario where U(1) mediation of supersymmetry break-

ing arises due to an additional U(1)′ factor extending the MSSM gauge group [8 – 10]. In

references [10] it was proposed to extend the MSSM by an additional U(1)′ gauge symme-

try under which all MSSM fields, as well as a new Standard Model singlet S are charged.

Here S replaces the µ parameter of the MSSM. This extended MSSM needs to include a

number of exotics with Yukawa couplings to S in order to cancel anomalies [10]. From the

point of view of string theory, the presence of additional U(1) symmetries and exotics is

rather generic and models such as the one presented in [10] might therefore admit a natural

embedding into a string compactification.

In the scenario of [10] it was demanded that the U(1)′ gauge symmetry is not broken in

the hidden sector, but rather in the visible sector through a vev of the additional field S. In

contrast, supersymmetry breaking is assumed to take place in the hidden sector. The non-

vanishing F-terms generate a mass M̃ for the fermion in the U(1)′ vector multiplet directly

as in (2.4) or through loop corrections involving the supersymmetry breaking scalars. For

a Lagrangian of the form (2.1) there are no direct couplings to the hidden sector and

supersymmetry breaking is mediated by the U(1)′. Since all chiral multiplets are charged

under the U(1)′ the fermion soft masses mi are generated already by a one loop correction.

The gauginos do not directly couple to the U(1)′ and are thus only induced at the two loop

level. Explicitly, the gaugino and scalar soft masses take the form

Ma ∼
g̃2g2

a

(16π2)2
M̃ log

(

ΛS

M̃

)

, m2
i ∼

g̃2Q2
i

16π2
M̃2 log

(

ΛS

M̃

)

, (2.7)

– 6 –



J
H
E
P
1
0
(
2
0
0
8
)
0
7
7

hidden
singularity:

susy breaking fluxes

visible
singularity:

MSSM on D-branes

Figure 1: Compact manifold with hidden and visible sector singularity.

where g̃ is the U(1)′ gauge coupling, Qi are the U(1)′ charges of the matter multiplets, and

ΛS is the scale of supersymmetry breaking. We refer the reader to ref. [10] for a detailed

analysis of the phenomenology of this model.

In this work we will study the necessary steps for embedding U(1) models such as the

ones of section 2.1.1 and 2.1.2 in a Type IIB flux compactification. This requires a precise

specification of the supersymmetry breaking hidden sector and its U(1)′ coupling to the

visible sector.

2.2 An embedding into string theory

In the following we will describe a string theory scenario which admits a four-dimensional

low energy effective Lagrangian of the form (2.1). We will consider a type IIB compactifica-

tion on a manifold admitting two, possibly warped, singularities as schematically depicted

in figure 1. The visible singularity is resolved by two- or four-dimensional cycles while the

hidden singularity is deformed by three-cycles. If the internal manifold obeys certain topo-

logical conditions, we argue that such a set-up allows a U(1) mediation of supersymmetry

breaking triggered by background R-R and NS-NS three-form fluxes to a visible sector.

2.2.1 Mixing hidden and visible U(1) vector multiplets

The string compactifications of interest admit two U(1) gauge fields AH and AV coupling

to the hidden and the visible sector respectively. Their kinetic terms in an N = 1 effective

theory are of the form

Lkin =
∑

i=V,H

(

1

2
Refi Fi ∧ ∗Fi +

1

2
Imfi Fi ∧ Fi

)

, (2.8)

where FV = dAV, FH = dAH, and fV, fH are the holomorphic gauge-coupling functions. In

the following we will review the mechanism suggested in ref. [13, 12] to obtain an effective

Lagrangian (2.1) for a linear combination A of AH and AV. Namely, as we will check for

our scenario later on, the dimensional reduction to four space-time dimensions can induce

a coupling term of the form

L(C) = C ∧ d(q AV + eAH) +
1

2µ2
|dC|2 , (2.9)

– 7 –
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where C is a massless two-form field and e, q are U(1) charges. In four space-time dimen-

sions the massless two-form C is dual to a scalar ρ. The effective Lagrangian obtained by

dualizing (2.9) is given by

L(ρ) =
1

2
µ2|dρ + q AV + eAH|

2 . (2.10)

As a consequence of the standard Higgs mechanism for ρ there is a heavy and a massless

mass eigenstate

Ah = q AV + eAH , q A = q AV − eAH . (2.11)

Here we normalized the light U(1) such that the visible sector fields have the same charge

under 2A and AV. To make the Higgsing more explicit, we note that in an N = 1

supersymmetric theory the scalar ρ in (2.10) will combine with a second real scalar v to

form the bosonic content of a chiral multiplet. This chiral multiplet is then absorbed by

the U(1) vector multiplet Ah to form a massive vector multiplet (Ah, ξ(v)), where ξ(v)

is the dynamical Fayet-Iliopoulos term. The scalar ρ has been absorbed by the gauge

transformation Ah → Ah − dρ in (2.10). In a string compactification the heavy mass state

Ah has typically a mass of order string scale and can be integrated out. The resulting

effective Lagrangian takes the desired form (2.1). Up to corrections suppressed by the

mass of Ah, the effective gauge-coupling of the massless U(1) is given by

4Ref = RefV + (q/e)2 RefH . (2.12)

The effective gaugino mass M̃ for the light U(1) is computed by inserting (2.12) into (2.4).

Note that the above results are only true at leading order, and further corrections will arise

due to integrating out the massive U(1) vector multiplet. The effects on the pattern of

soft supersymmetry breaking terms can be evaluated rather general as shown in ref. [20],

following earlier works [21].

2.2.2 Outline of the scenario

To be more explicit we now consider type IIB string theory compactified on a six-

dimensional manifold M6, which we choose to be a non-Kähler deformation of a Calabi-Yau

3-fold, such that the four-dimensional effective theory is still an N = 2 supergravity theory.

The supersymmetry will be further reduced to N = 1 by an orientifold projection and the

inclusion of space-time filling D-branes [15]. For many orientifold projections the spectrum

of this theory contains a number of U(1) vector multiplets with vectors arising from the

R-R four-form C4. For simplicity, let us concentrate on one such vector field AH and its

magnetic dual ÃH. Both arise as Kaluza-Klein modes of C4 by integrating

AH =

∫

A
C4 , ÃH =

∫

B
C4 , (2.13)

where A,B are three-dimensional submanifolds in M6 with A ∩ B = 1. That C4 contains

both AH and ÃH is due to the fact that its field strength F5 = d10C4 needs to obey the

ten-dimensional self-duality constraint F5 = ∗F5. For appropriate A,B the self-duality of

– 8 –
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F5 implies the electro-magnetic duality between AH and ÃH. As indicated by the notation,

the vector AH will correspond to the hidden sector U(1)H of section 2.1.

The visible MSSM-like sector is realized on stacks of space-time filling D3 or D7

branes [1 – 4]. Later on, we will mostly focus on intersecting branes on a del Pezzo four-

cycle S. The resulting four-dimensional effective gauge theory generically contain a number

of U(1) factors which arise, for example, from the splitting of the U(N) gauge groups on a

stack of N branes into U(N) = SU(N) × U(1). An appropriate combination of such U(1)

factors will provide a vector field AV, the visible sector U(1)V. In the MSSM U(1)V has to

coincide with the non-anomalous hypercharge when modeling the scenario of section 2.1.1.

In many intersecting brane models also additional U(1) symmetries are induced and can

be identified with the U(1)′ of the model in section 2.1.2.

So far we introduced two decoupled sectors containing AH and AV respectively. In

order to obtain an effective action of the form (2.1), with a common light U(1) vector field

A = qAV−eAH, our string compactification should admit the couplings in the Stückelberg

Lagrangian (2.9) or equivalently (2.10) to a four-dimensional two-form C or its dual scalar

ρ. In our orientifold compactification, both C and ρ are obtained as Kaluza-Klein modes

of the R-R four-form C4 as

C =

∫

Σ
C4 . ρ =

∫

Σ̃
C4 . (2.14)

Here Σ and Σ̃ are two- and four-dimensional submanifolds of M6 respectively, fulfilling

Σ ∩ Σ̃ = 1. The self-duality of F5 implies the four-dimensional duality of ρ and C.

In the next step we have to specify the topology of M6 and the properties of A,B

in (2.13) as well as Σ, Σ̃ in (2.14) in order that AV + AH is massive in our string com-

pactification. Let us first discuss the gauge term of the form (2.10) induced for AH. A

more detailed analysis of this gauging can be found in section 3. In Calabi-Yau reductions,

where A,B and Σ, Σ̃ are harmonic cycles, ρ and C do not couple to the vector field AH.

However, we can couple ρ to AH if we impose the topological conditions

∂Σ̃ = eA , ∂B = eΣ , (2.15)

i.e. for some constant e the cycles eA and eΣ should be boundaries of Σ̃ and B respectively.

The kinetic terms for ρ arise from the ten-dimensional term
∫

F5∧∗F5. The first topological

relation in (2.15) yields that
∫

Σ̃
F5 = dρ +

∫

∂Σ̃
C4 = dρ + eAH . (2.16)

Here we split d10 = d4 + d6, applied Stokes Theorem in 6 dimensions and used (2.13)

and (2.14). In other words, the condition (2.15) implies that the scalar ρ gets gauged by

the U(1)H exactly as in (2.10). Note that (2.15) together with the fact that ρ sits in the

same supermultiplet as a Kähler modulus implies that M6 cannot be a Kähler manifold

as we show in section 3.

In a next step we also need to couple the vector field AV to the R-R fields ρ or C.

Here it is natural to concentrate on the coupling to C via the Chern-Simons action of the

– 9 –
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A

B

Σ̃ Σ

S

local flux

geometry orientifold bulk

visible sector

on D-branes

Figure 2: Non-Calabi-Yau space with two local geometries. The three-dimensional chain B

reaching through the orientifold bulk has a two-dimensional boundary Σ = ∂B in the visible MSSM

sector on a four-cycle S. The four-dimensional chain Σ̃ reaching through the bulk has a three-

dimensional boundary A = ∂Σ̃ in the hidden flux geometry.

space-time filling D7 branes. As we will discuss in section 3.3, this action contains a term

of the form ∫

W7,1

C4 ∧ F ∧ F = q

∫

M3,1

C ∧ dAV + . . . , (2.17)

where F is the field strength on the D7 brane world-volume W7,1 and M3,1 is our space-

time. Here q is an induced D5 charge arising from fluxes on the D7 brane. The coupling to

C defined in (2.14) can be non-vanishing if Σ is in the world-volume of the D7 brane.1 The

coupling (2.17) is a Stückelberg mass term of the form (2.9). Since ρ and C are dual in four

dimensions we can thus combine (2.16) and (2.17) showing that ρ is gauged as in (2.10).

Precisely as in (2.11) this determines a massless and a heavy linear combination A,Ah. A

schematic overview of our set-up is presented in figure 2.

To complete our string set-up we now have to discuss how the fermion λ in the vector

multiplet (A,λ) receives a bare mass from an hidden sector F-term as in (2.4). Here the

key point is, that the gauge coupling function fH of AH is holomorphic in the complex

structure deformations of M6 [28]. The complex structure deformations appear in the flux

superpotential Wflux induced by R-R and NS-NS three-form fluxes F3 and H3. Denoting

by τ the complex dilaton axion and by Ω the holomorphic three-form on M6 we have

W =

∫

M6

G3 ∧ Ω , G3 = F3 − τH3 . (2.18)

The superpotential depends holomorphically on the complex structure deformations

through Ω. The corresponding scalar potential can admit minima with non-vanishing

F-terms, which thus induce a bare mass for λ.

3. U(1) mediation in non-Kähler compactifications

In this section we study a detailed realization of U(1) mediated supersymmetry breaking in

a Type IIB orientifold compactification. We discuss the construction of the internal non-

Kähler geometries in section 3.1. The orientifold projection as well as the four-dimensional

1Strictly speaking, it will be sufficient if there exists a two-cycle in the world-volume of the D7 brane

which can support D5 charge which induces the coupling (2.17). As for the compact orientifold example

presented in section 5 this can be the case even though Σ itself is not a curve in the D7 world-volume.
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N = 1 effective action and its characteristic functions are studied in section 3.2. The

visible sector on a del Pezzo surface is introduced in section 3.3, while the hidden flux sector

breaking supersymmetry is discussed in section 3.4. The main focus of this section is the

study of the four-dimensional effective action in terms of the topological data and relations

of the internal manifold. Most of the explicit geometric constructions are postponed to

section 4.

3.1 Non-Kähler resolutions

Let us focus on the compactification of type IIB string theory on a six-dimensional manifold

M6. In order to realize a U(1) coupling between the hidden flux and the visible brane sector

as in section 2.2, M6 cannot be a Calabi-Yau manifold. However, in order that the four-

dimensional effective theory still possesses some supersymmetry, M6 needs to admit a

globally defined three-form Ω and a two-form J , which define an SU(3) structure on M6

such that

J ∧ Ω = 0 , J ∧ J ∧ J = cΩ ∧ Ω̄ 6= 0 , (3.1)

for some complex constant c on M6 [22 – 24]. Ω and J are the analogs of the holomorphic

three-from and Kähler form on a Calabi-Yau manifold. However, on a general SU(3)

structure manifold both dJ and dΩ can be non-vanishing.

In our set-up we wish to deviate as little as possible from the Calabi-Yau geometry in

order to keep in good approximation the powerful calculational tools of the N = 2 special

geometry. Therefore, we will restrict ourselves to manifolds which are still complex, but

can be non-Kähler. In terms of J,Ω this implies [22]

dΩ = 0 , dJ = W3 , W3 ∧ J = 0 , (3.2)

where W3 is the three-form parameterizing the obstruction of M6 being Kähler. The

condition (3.2) will be realized by a non-Kähler resolution of a singular Calabi-Yau mani-

fold [25 – 27].

Let us consider conifold transitions between a Calabi-Yau manifold Y to a manifold

M6. In such a topological transition one or more cycles Ai of S3 topology are shrunken

to a node and resolved by exceptional two-cycles Σa with S2 topology. There are global

restrictions which need to be satisfied in order that M6 remains Kähler. A well-known

example of Kähler transitions are transitions between Calabi-Yau manifolds Y → Y ′ = M6.

These occur if the shrinking three-cycles obey a number of relations in homology. For

example, let us consider a transition in which k S3’s, denoted by Ai, shrink to nodes which

are subsequently blown up to k S2’s. Suppose δ is the number of homological relations

k
∑

i=1

ci
j Ai = ∂Σ̃j , j = 1, . . . , δ , (3.3)

with constant coefficients ci
j and four-chains Σ̃j. Since the independent A-cycles correspond

locally one to one to variations of the complex structure, one has to fix k − δ complex

structure moduli to create the k nodes in Y . This implies h2,1(Y ) − h2,1(Y ′) = k − δ.
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p p′ q

Figure 3: Divisor Σ̃ with three nodes p, p′, q.

Further, in order for Y ′ to be Kähler with dJ = 0 there must be k − δ homology relations

among the k exceptional S2’s. If this is the case a Calabi-Yau transition from Y to Y ′

exists and h1,1(Y ′) − h1,1(Y ) = δ. As we will argue next, one can also violate the Kähler

condition in a simple and controlled way and thus construct non-Kähler manifolds.

Let us start with the simplest example of a transition to a non-Kähler manifold. From

the above discussion, we infer that one can never shrink a single S3 cycle A, which is

non-trivial in homology, i.e. k = 1, δ = 0 in (3.3), and resolve the singular geometry by an

S2 cycle Σ such that the resulting geometry is Kähler. The reason is that the non-trivial

three-cycle B, which is symplectic dual to A with A ∩ B = 1, develops a puncture at the

nodal singularity as A shrinks to zero size. It is easily seen from the local geometry near

the intersection of A,B that the exceptional two sphere Σ becomes then a boundary of B.

As a consequence as soon as one resolves the node to Σ with finite size v = vol(S2) one

gets [25, 26]

0 6= v =

∫

Σ
J =

∫

∂B
J =

∫

B
dJ . (3.4)

The non-vanishing dJ implies that the manifold M6 cannot be Kähler.

These transitions to non-Kähler manifolds can be generalized to yield the set-ups

suggested in section 2.2. A convenient way to achieve this is to both resolve and deform

nodes located on a divisor Σ̃. Let us illustrate such a process on a simple example which can

be generalized easily to more complicated situations. We assume that we have a singular

Calabi-Yau manifold with three nodes p, p′, q located on some divisor Σ̃ as depicted in

figure 3. After deforming all singularities into three-spheres A,A′, Ã they obey

A + A′ + Ã = ∂Σ̃ , (3.5)

which is (3.3) for δ = 1 and k = 3. If (3.5) is the only condition in homology relating the A’s

there will exist two symplectic dual non-trivial three-cycles B,B′ with A∩B = A′ ∩B′ = 1

and A ∩ B′ = A′ ∩ B = 0 such that

B ∩ (A + A′ + Ã) = B′ ∩ (A + A′ + Ã) = 0 . (3.6)

Clearly, we could also resolve any number of nodes into two-spheres. This corresponds

to a geometric transitions of some or all of the three-cycles in (3.5). As discussed above,

the blow-up process can preserve dJ = 0 if there are homological relations between the

shrinking three-cycles, since the Kähler volumes of the resolving S2’s can cancel. However,

we can also decide to only resolve the third node q into a two-sphere Σ, while deforming

the nodes p, p′ into three-spheres A,A′. This is shown in figure 4 and corresponds to a non-

Kähler transition, with a homological relation that becomes very useful for our geometric

engineering of supersymmetry breaking.
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B
B′

A A′
Σ̃ Σ

Figure 4: Divisor Σ̃ with boundary A + A′ and the three-chains B,B′ with boundary Σ.

The evaluation of dJ is now similar to (3.4). The condition (3.6) implies that the two

B,B′ as well as Σ̃ have a boundary

∂B = ∂B′ = Σ , ∂Σ̃ = A + A′ . (3.7)

Performing the integral of dJ over B,B′ we thus find

1

2

∫

B+B′

dJ =

∫

Σ
J = v ,

∫

B−B′

dJ = 0 . (3.8)

This implies that dJ is non-vanishing and the resulting manifold M6 is non-Kähler. How-

ever, we can ensure that dΩ = 0 on M6 by canceling the two holomorphic volumes of the

deformed S3’s. More precisely, due to the second relation in (3.7) we need to obey the

condition

0 =

∫

Σ̃
dΩ =

∫

A+A′

Ω = X1 + X2 , X1 =

∫

A
Ω , X2 =

∫

A′

Ω , (3.9)

such that X1 = −X2. As we will see in section 3.2, this condition can be consistently

imposed together with an orientifold involution of M6 which maps A to A′.

Let us also comment on the construction of figure 4 from the point of view of the two

local geometries. In order to do that we can imagine that we zoom into either of the two

regions of figure 4. One region contains a patch around the small three-spheres A,A′, while

the second region is the patch containing the two-sphere Σ. Effectively, in this process we

obtain two non-compact geometries by scaling the connecting chains B,B′ and Σ̃ to be

infinitely large. In the local geometries we are still able to identify the compact two- and

three-cycles Σ and A,A′, while the information about the chains is lost in performing the

local limit. In particular, this implies that the condition (3.8), (3.9) cannot be evaluated in

the local geometry and require global information about M6. In non-compact geometries

one has to choose the dual non-compact cycles Σ̃,B,B′ by fixing appropriate boundary

conditions. When patched into a compact space one has to demand that they fulfill the

conditions (3.7).

3.2 The effective action of non-Kähler orientifolds

Compactifying type IIB string theory on the non-Kähler manifold M6 leads to a four-

dimensional effective N = 2 supergravity theory [23]. An appropriate orientifold projection
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will reduce this further to N = 1 [29, 30]. For set-ups with O3/O7 planes the orientifold

projection O = Ωp(−1)FLσ contains an involution σ obeying

σ∗J = J , σ∗Ω = −Ω , (3.10)

where J and Ω are the globally defined two and three-form obeying (3.1) and (3.2). The

orientifold symmetry σ also splits the cohomologies into positive and negative eigenspaces

Hn = Hn
+⊕Hn

− with dimensions bn
± = dimHn

±. For simplicity, we will restrict to manifolds

M6 with b2
− = 0. To remain in the orientifold theory the ten-dimensional NS-NS B-field

B2 and the R-R forms C0, C2, C4 have to transform under the involution σ as

σ∗B2 = −B2 , σ∗Cp = (−1)p/2 Cp . (3.11)

In performing the Kaluza-Klein reduction to four space-time dimensions, we have to

expand all ten-dimensional fields in forms on M6 transforming with the appropriate sign

under σ∗. Note that in a consistent compactification on a non-Kähler space this will

also involve non-harmonic representatives [23, 29 – 31]. In the following we generalize the

discussion of section 3.1 to the case of N non-Kähler resolutions. We denote the small

resolving two-spheres by Σi, while the deforming pairs of three-spheres are denoted by

Ai,A
′
i, with i = 1, . . . , N . Later on, we will realize all Σi in a four-cycle S ∈ H4(M6) on

which the visible gauge theory is modeled. In other words we will identify Σi ∈ H2(S), while

there will be homological relations among the Σi within M6. The compact three-cycles

Ai,A
′
i will support the hidden flux geometry. They are non-trivial in the local Calabi-Yau

geometry around the hidden singularity. The chains connecting the two- and three-cycles

in M6 are denoted by Σ̃i and Bi,B′i. In order to connect the hidden and visible sector we

demand that they obey

∂(Bi + B′i) = eijΣj , ∂Σ̃i = eij(Aj + A′
j) , (3.12)

for some constant matrix eij of rank N . The equation (3.12) is the generalization of (3.7).

In summary, we associate to each non-Kähler resolution

(Σi, Σ̃
i) , (Ai,A

′
i,B

i,B′i) , i = 1, . . . , N . (3.13)

The N = 1 orientifold involution σ∗ introduced in (3.10) is chosen such that

σ∗Σi = Σi , σ∗Σ̃i = Σ̃i , σ∗Ai = A′
i , σ∗Bi = B′i , (3.14)

Note that the first two conditions are not necessarily true point-wise for all points on Σi, Σ̃
i,

such that Σi, Σ̃
i are not necessarily entirely inside an orientifold plane. Finally, there can

be cycles Γa ∈ H2(S) in the visible sector region transforming as

σ∗Γa = −Γa . (3.15)

Since we demand that b2
− = 0 the cycles Γa will be trivial in M6. Note that a convenient way

to invariantly characterize the introduced basis is provided by using relative homology.2 For

2See e.g. [32] for an introduction to relative homology.
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chain dimR relations σ-parity

(Σi,B
i + B′i) (2, 3) ∂(B + B′) = eΣ +

(Σ̃i,Ai + A′
i) (4,3) ∂Σ̃ = e(A + A′) +

Γa 2 boundary −

Table 1: Non-harmonic chains used in the Kaluza-Klein reduction.

example, the relative homology group H3(M6/S), will by definition contain the elements

of H3(M6) as well as three-chains with boundaries on S. Using the chains introduced

in (3.13) and (3.15) we will be able to determine the spectrum of the four-dimensional

effective theory. It is then shown that the Kaluza-Klein modes associated to the non-

harmonic chains, summarized in table 1, appear as massive scalar fields in the effective

theory.

3.2.1 The complex structure sector

Let us first discuss the four-dimensional fields associated to the holomorphic three-form

Ω. Recall that we demanded in (3.2) that our manifold M6 is still complex. This implies

that the space of complex structure deformations will admit a similar structure as in the

Calabi-Yau case. We introduce the periods (XK ,FK) as

XK =

∫

AK
−

Ω , FK =

∫

B−

K

Ω , K = 0, . . . , b3
− − 1 , (3.16)

where (AK
− ,B−

K) is a real symplectic basis of H−
3 (M6). Ω and its periods depend holomor-

phically on b3
− − 1 complex structure deformations zk. By the local Torrelli Theorem the

complex structure deformations can be mapped locally one to one to the projective space

spanned by the periods XK . In special coordinates this map is given by zk = Xk/X0.

Note that all cycles in (3.16) have to be in the negative eigenspace of σ∗ due to (3.10). In

particular, if Ω is integrated over a positive cycle Ai + A′
i one has

Xi
+(z) ≡ X0zi

+ =

∫

Ai+A′

i

Ω = 0 . (3.17)

This condition is in accord with (3.9) where it was imposed to ensure that dΩ = 0. Similar

constrains have to be imposed for integrals over elements in H+
3 (M6). Note however, that

there are U(1) vectors arising from the integrals of the R-R four-form C4 over these positive

cycles. In accord with (3.11) one has

Ai
H =

∫

Ai+A′

i

C4 , Aκ =

∫

A+
κ

C4 , κ = 1, . . . , b3
+ , (3.18)

where A+
κ is a basis of H+

3 (M6). Note that the vectors arising from integrals over the

symplectic dual cycles of Ai + A′
i and A+

κ do not contain new degrees of freedom due to

the self-duality of C4 as discussed in section 2.2. While in the underlying N = 2 theory the
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complex structure deformations pair with the U(1) vectors into N = 2 vector multiplets

the orientifold splits these into N = 1 chiral and vector multiplets. One thus finds b3
− chiral

multiplets with bosonic scalars zk and b3
+ + N vector multiplets with bosonic components

Ai
H, Aκ.

The N = 1 characteristic functions for zk and the vectors Ai
H, Aκ are readily deter-

mined following [28, 29]. The Kähler potential for the complex structure deformations zk

takes the well-known form

Kcs(z, z̄) = − log

[

− i

∫

Ω ∧ Ω̄

]

. (3.19)

The gauge-kinetic coupling functions of the U(1) vectors Ai
H, Aκ will be denoted by fH

ij , fκλ

and fκi. They are holomorphic functions of the complex structure deformations zk. In

general there will be a kinetic mixing between the Ai
H and Aκ through fκi. For simplicity,

we will assume that this mixing is small such that the massless Aκ decouple from the Ai
H.3

Our main focus will be on the vectors Ai
H with gauge-coupling function given by

fH
ij (z) = −i

∂2F

∂zi
+∂zj

+

∣

∣

∣

∣

zi
+=0

, (3.20)

where F(z) is the N = 2 pre-potential depending on all complex structure deformations

zi
+, zk defined after (3.16) and in (3.17). As explained in more detail in ref. [28], the N = 1

gauge-kinetic coupling function is obtained by first taking derivatives with respect to zi
+

and then restricting to the orientifold locus zi
+ = 0. We will argue in section 3.4 that Kcs

and fH
ij (z) should be calculable at least near the local hidden singularity.

3.2.2 The non-Kähler sector

Let us now turn to the N = 1 chiral multiples arising from J and B2. It was shown

in ref. [28, 29] that the orientifold theory enforces a particular complex structure on the

N = 1 chiral field space which combines the NS-NS fields with the R-R fields into complex

scalars. More explicitly, one introduces

τ = C0 + ie−φ , Ga =

∫

Γa

(C2 − τB2) ,

TM = −

∫

Σ̃M

e−B2 ∧ CRR + ie−φ

∫

Σ̃M

1

2

(

J ∧ J − B2 ∧ B2

)

, (3.21)

where CRR = C0+C2+C4. The two-cycles Γa are introduced in (3.15), while the four-chains

Σ̃M = (Σ̃α, Σ̃i) consist of a basis Σ̃α of H+
4 (M6) and the chains Σ̃i introduced in (3.13).

Note that τ,Ga, TM are nothing else then the integrals of e−B2
(

CRR + ie−φ Re(eiJ )
)

over

one, two and four-chains respectively. These chains have to transform with definite signs

under σ∗ to due to the transformation (3.10) and (3.11) of J,B2 and Cp. The Kähler

3Note that the presence of kinetic mixing can have an interesting effect on the visible phenomenology

as discussed recently in a string theory context in ref. [33] (see also the references therein).
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potential for τ,Ga, TM is given by [29]4

Kq = −2 log
[

e−2φV
]

, V =
1

3!

∫

M6

J ∧ J ∧ J , (3.22)

where V is the string-frame volume of the compact manifold M6. The total Kähler potential

for the bulk modes is then given by K = Kcs + Kq, with Kcs as in (3.19).

In order to evaluate the Kähler metric, one needs to evaluate the Kähler potential (3.22)

as a function of the N = 1 coordinates τ,Ga and TM defined in (3.21). This is in general

very hard, in particular since the internal manifold is not Kähler and we cannot apply

N = 2 special geometry. However, the derivatives of Kq can be evaluated using the work

of Hitchin [34] as done in [29]. Firstly, one notes that Kq only depends on the dilaton e−φ

and J . It was shown in [34] that e−2φV is a well-defined functional of e−φRe(eiJ) as long

as this form is closed. This is indeed the case, since we imposed dJ ∧ J = 0 in (3.2) and

we are in the orientifold limit where φ is constant on M6. This ensures that Kq can be

evaluated as function of Im τ and e−φ
∫

Σ̃M J ∧ J . In order to translate the latter into a

dependence on Im TM one needs to compensate the B2 in ImTM using Im Ga. This can be

done consistently on each divisor Σ̃M and in particular for the four-cycle S providing the

visible sector. More generally, it was shown in ref. [34] that e−2φV can be evaluated as a

function of e−φRe(e−B2+iJ) as long as this form is closed under d+H3∧, where H3 = 〈dB2〉

is the NS-NS three-form flux.

For the evaluation of the Kähler metric it is essential that the Kähler potential does

not depend on the R-R forms C0, C2 and C4. In particular, note that in contrast to J ∧ J

the four-form C4 is not closed. This non-closedness results in a gauging of the scalars Ti

since ∫

Σ̃i

d(e−B2 ∧ CRR) = d4ReTi +

∫

Σ̃i

d6C4 = d4ReTi + eijA
i
H , (3.23)

where d4 and d6 are the differentials in the visible and compact dimensions respectively,

and we have used (3.12) in evaluating the last equality. This implies that we have to

replace the ordinary derivatives in the four-dimensional kinetic terms for TM = (Tα, Ti) by

the covariant derivatives

DTα = dTα , DTi = dTi + ieijA
j
H , (3.24)

where Ai
H are the U(1) vector fields in (3.18). The gauging of Ti will induce a D-term

providing a potential for the modes arising from non-harmonic forms. Note that the N = 2

analog of the gauging (3.23) has been studied in refs. [23].5

3.2.3 The scalar potential

So far we discussed the kinetic terms for the vectors and scalars in the N = 1 effective

action. Even in the absence of background fluxes, we expect that a potential is generated

4Strictly speaking this Kähler potential is valid only in the large volume limit of M6 and will receive

corrections once cycles in M6 become small.
5In this case, the analysis of the kinetic terms is more complicated since the R-R fields reside in the

quaternionic geometry and the application of Hitchins work is likely to be more involved.
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for the compactification on M6. In particular it should give a mass to the fields arising

from the non-Kähler deformation resolving the singular Calabi-Yau space. Such a potential

will arise precisely from the gauging (3.24) of the scalars Ti. Recall that the N = 1 scalar

potential is of the form

V = eK
(

GIJ̄DIWDJW − 3|W |2
)

+
1

2
(Ref)KL DKDL , (3.25)

where (Ref)KL is the inverse of the real part of the gauge-coupling function fKL. Focusing

on (3.24) we note that eij is invertible and all N complex fields Ti are gauged. This implies

that there are N D-terms DH
i induced in the potential (3.25). In the case at hand we

evaluate using (3.21), (3.22) and (3.12) that 6

DH
i = −ieij ∂Ti

K = 4eKq/2 e−φ

∫

Bi+B′i

dJ , (3.26)

where Kq is given in (3.22). The simple form of this D-term arises due to the fact that there

are no other scalars in the spectrum charged under Ai
H. One might have suspected that,

at least at the special locus where some of the three-cycles become very small, additional

states charged under Ai
H arise. These would correspond to light D3-branes wrapped on the

vanishing cycles and contribute light hypermultiplets in the underlying N = 2 theory [35].

However, such states are actually absent if there is a R-R flux on the shrinking three-

cycle [36].

As expected for a non-Kähler reduction, the D-term (3.26) and the gauging (3.24)

will induce a mass for the complex scalars Ti. However, it remains to discuss the scalar

potential for the fields Ga defined in (3.21) as integrals of C2 and B2 over the negative

cycles Γa. Such a mass term will arise from the the reduction of the ten-dimensional term

1

4

∫

10
eφ G3 ∧ ∗10Ḡ3 =

∫

4
∗41 mab GaḠb + . . . , (3.27)

where G3 = F3− τH3 contains the field strengths of C2 and B2. The mass mab will depend

on the size of the three-chains with boundary cycles Γa. The mass term (3.27) can also be

translated into an N = 1 potential (3.25) and will arise from a superpotential. This W is

of the form (2.18), i.e. given by

W =

∫

M6

G3 ∧ Ω , (3.28)

where G3 is the internal part of the field strengths of C2, B2. This W should contain terms

linear in Ga arising form the exact forms d6(C2 − τB2), where d6 is the differential on

M6. However, in order to derive (3.27) from (3.28) one has to allow variations of Ω which

are non-closed and hence leave the class of complex manifolds. The consideration of this

extended class of spaces is crucial since M6 is compact. On the local non-compact Calabi-

Yau geometries of M6 one cannot move d6 onto Ω in (3.28). Therefore, the non-compact

6Recall the general formula for the D-term of a U(1) symmetry, KIJ̄X̄ J̄
k = ∂IDk, where XJ is the Killing

vector of the U(1) symmetry given by δMI = ΛkXJ
k ∂JMI .
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case allows to model the non-complex geometries by changing the boundary conditions for

the non-compact cycles (see the recent discussion in [37, 38]).

For the discussion of U(1) mediation the fields Ga will be of no importance. We will

make use of the fact that they are massive and can be fixed to vevs where M6 is complex.

The flux superpotential (3.28) can also fix the dilaton τ as well as the complex structure

moduli. We will assume that the only light complex structure moduli arise from the hidden

singularity discussed in section 3.4 and trigger supersymmetry breaking. Finally, in order

to stabilize all moduli of the theory, one should also fix the moduli Tα supersymmetrically

by, for example, using the mechanisms proposed in [39].

3.3 The visible sector on D-branes

In this section we discuss the inclusion of space-time filling D-branes which provide the

visible sector in the effective Lagrangian (2.1). We apply and generalize the results of

refs. [40 – 42] to the orientifold compactifications of section 3.2. The four-dimensional theory

will admit charged chiral matter fields if this sector consists of a number of intersecting

D-branes. In order to provide the ground for the examples considered in section 4, we will

concentrate on branes at singularities of the internal space. The local geometry allows the

D-branes to split up into several intersecting fractional branes which can be engineered to

yield a semi-realistic visible spectrum [1 – 3].7

The singularities we will consider are obtained by shrinking a four-cycle in M6 to a

point. In the following we will exemplify the general strategy for the case of del Pezzo

surfaces. These are either the surfaces Bn which are obtained by blowing up P
2 on n

generic points, or P
1 × P

1. The del Pezzo Bn has Hodge numbers h(1,1) = n + 1 and

h(2,2) = h(0,0) = 1, with all other numbers vanishing, so that the Euler number is

χ(Bn) =

∫

Bn

c2 = 3 + n . (3.29)

Using Hirzebruch-Riemann-Roch [43] gives for the arithmetic genus of a surface S: χ0 =
∑dim(S)

p=0 (−1)php,0 = 1
12

∫

S(c2
1 + c2), and since χ0(Bn) = h0,0 = 1 we get

K2 =

∫

Bn

c2
1 = 9 − n . (3.30)

One calls K2 also the degree of the del Pezzo surface. A base of homologically nontrivial

two-cycles in Bn consists of the class of lines l in P
2 as well as the n exceptional curves

with classes ei corresponding to the blow-ups. The intersection numbers are l2 = 1 and

e2
i = −1 with all other intersections vanishing.

As an alternative basis on can use the degree zero sublattice of H2(Bn, Z) which has

zero intersection with the canonical class

K = −3l +
∑

i

ei . (3.31)

7For our purposes, it will not be crucial to model a fully realistic MSSM.
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class B1 B2 B3 B4 B5 B6 B7 B8

(0;−1) 1 2 3 4 5 6 7 8

(1; 12) 1 3 6 10 15 21 28

(2; 15) 1 6 21 56

(3; 2, 16) 7 56

(4; 23, 15) 56

(5; 26, 12) 28

(4; 3, 27) 8

Total no. 1 3 6 10 16 27 56 240

Table 2: Number of lines on the Bn del Pezzo surfaces. The coefficients (a; b1, . . . bn) describing

the classes are given w.r.t. the generators (l;−e1, . . . ,−en).

For n ≥ 3 this lattice is identified with the root lattice of the groups En, where for n = 6, 7, 8

En = En are the exceptional groups En, E5 = D5, E4 = A4 and E3 = A2 ⊕A1. Defining the

simple roots by

αi = ei − ei+1 , i = 1, . . . , n − 1 , αn = l − e1 − e2 − e3 (3.32)

it is immediate that the intersection matrix of αi is given by the negative Cartan matrix

−Cij of the corresponding Lie algebra. The intersection matrix KIJ of the cycles ΣI =

(K,αi), I = 0, . . . , n is thus given by

K00 = 9 − n , Kij = −Cij , K0i = 0 . (3.33)

Let C be a curve in the del Pezzo surface. Then its degree deg(C) and its arithmetic

genus g reads

deg(C) = −K.C , g =
1

2
(C.C + K.C) + 1 . (3.34)

Lines on the del Pezzo surface fall into representations of the Weyl-Group. To understand

the geometry of the embedding of del Pezzo surfaces in Calabi-Yau spaces it is useful that

the number of some lines will appear as rational instantons of degree one in the classes

realized globally in the embedding Calabi-Yau. For convenience of the reader we reproduce

table 3 of ref. [44].

In the del Pezzo surface Bn there are n + 1 Kähler parameters associated with the

volumes of the two-cycles (K,αi). In general, for Bn in some compact Calabi-Yau space

ι : Bn →֒ Y , not all of the two-cycles will descend to Kähler moduli of Y . The number of

associated Kähler moduli is determined by the rank of the map

Π : H2(Bn) → H2(Y ) , Π(Σ, ω) =

∫

Σ
ι∗ω , (3.35)

where Σ ∈ H2(Bn) and ω ∈ H2(Y ). Using the orientifold involution σ we can split H2(Bn)

into eigenspaces H+
2 (Bn) ⊕ H−

2 (Bn) with basis (Σ+
κ ,Σ−

a ) and accordingly decompose the

intersections (3.33) as

Kκλ
+ = Σ+

κ · Σ+
λ , Kab

− = Σ−
a · Σ−

a , (3.36)
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with the mixed intersections Σ+
κ ·Σ−

a vanishing. Since ι commutes with σ, one can split Π

into maps from the σ-eigenspaces H±
2 (Bn) to H±

2 (Y ).

Note that in the case that the internal manifold is a non-Kähler space M6 as in

section 3.2 the map Π will no longer identify cohomology elements of M6 and Bn, but

should also include the boundary cycles Σi and Γa of table 1. Correspondingly, the new

map can be of higher rank. Following our considerations of section 3.2 the cycles Σi,Γa

will precisely be in the four-cycle S = Bn supporting the visible sector, i.e.

Σi ∈ H+
2 (Bn) , Γa ∈ H−

2 (Bn) . (3.37)

In summary, there will be two types of cycles: two-cycles in H2(Bn) which are non-trivial

in H2(M6), as well as two-cycles which are homologically trivial in M6. Recall that we

are taking b2
− = 0, such that all elements of H−

2 (Bn) are trivial in M6. In section 4.3 we

will discuss how one can count the number of cycles of the various types, and also show

that on a del Pezzo H2
−(Bn) is always non-empty if σ acts non-trivially on Bn.

Let us now wrap branes on the surface Bn. The non-trivial zero-, two- and four-cycles

in Bn can support fractional space-time filling D-branes. We will denote the field strength

of the kth stack of fractional branes by Fk. The number of D3, D5 and D7 branes are

encoded by the charge vector

ch(Fk) ∼= (rk, p
I
k, qk) . (3.38)

The D7 charge is the rank rk of Fk, the D5 charge is captured by fluxes pI
k
∼= (pκ

k , pa
k) on

two-cycles ΣI
∼= (Σ+

κ ,Σ−
a ) in Bn, and the D3 charge is encoded by the instanton number

qk. Explicitly, these are given by

pκ
k =

∫

Σ+
κ

Tr(Fk) , pa
k =

∫

Σ−

a

Tr(Fk) , qk =
1

2

∫

Bn

Tr(Fk ∧ Fk) . (3.39)

This form of the charge vector can be inferred from the coupling of the kth brane stack to

the R-R forms CRR via the Chern-Simons action8

SCS =

∫

M3,1×Bn

ι∗CRR ∧ eF
k−ι∗B2 . (3.40)

where CRR = C0 +C2 +C4 is the sum of the R-R potentials as in (3.21). It turns out to be

convenient to also define the topological numbers qk κ = pλ
k K

+
λκ and qk a = pb

k K
−
ba, where

we lower the indices with the inverses of the intersection matrices given in (3.36).

Expanding the Chern-Simons action and integrating over the four-cycle Bn one en-

counters the term of the form ImfV
k F k ∧F k, which contains the four-dimensional part F k

of the field strength Fk. This term determines the imaginary part of the gauge-coupling

function fV
k . Using the fact that fV

k is holomorphic in the N = 1 coordinates defined in

section 3.2, it is determined to be

fV
k = −i(TBn − qk aG

a − qk τ) , (3.41)

8Note that in general there will be corrections to SCS given by
q

ÂT /ÂN , where ÂT , ÂN are the Â

genera of the tangent and normal bundle to the brane world-volume. These will equivalently appear in the

definition (3.21) of the N = 1 coordinates.
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where TBn , Ga, τ are the N = 1 coordinates defined in (3.21). In particular, TBn is the

Kähler structure coordinate (3.21) corresponding to the del Pezzo four-cycle Bn and takes

the form

TBn = −ρBn + ie−φ volBn −
1

2(τ − τ̄)
K−

abG
a(G − Ḡ)b , (3.42)

where ρBn is the R-R axion and volBn is the volume of Bn.

In addition to the gauge-coupling function, there are also further couplings of the R-R

four-form to the gauge-theory. The expansion of the Chern-Simons action (3.40) yields the

term ∫

Bn

Tr(Fk ∧ Fk) ∧ ι∗C4 = qk M F k ∧ CM + . . . , (3.43)

where CM = (Ci, Cα) are the four-dimensional two-forms dual to the R-R four-form scalars

in Re TM defined in (3.21). Clearly, qk A vanishes if Σ̃M in (3.21) has no intersection with

the two-cycle in Bn supporting the D5 charge. The contribution (3.43) to the effective

action is of the form (2.9) and hence induces a gauging of the scalars Re TM . This implies

that the covariant derivatives (3.24) are modified to

DTα = dTα + iqk αAk
V , (3.44)

DTi = dTi + i(eij Aj
H + qk i Ak

V) ,

where Ak
V is the visible U(1)k factor on the kth D-brane stack. Note that the fields Ti

can thus be gauged by both the hidden and visible sector gauge-fields. As in eq. (2.11),

we can now identify heavy and light mass eigenstates proportional to eij Aj
H + qa i A

a
V

eij Aj
H − qa i A

a
V. As explained in section 2.1, the linear combinations appearing in (3.44)

can become heavy via the Higgs mechanism and can be integrated out. The remaining

light vector fields then couple to both the hidden flux geometry as well as the visible gauge

theory on the fractional branes and can mediate supersymmetry breaking.

We are now in the position to derive the D-term potential for the whole configuration.

In addition to the bulk D-term (3.26) we have additional contributions

DV
a = 4eKq

∫

Bn

Tr(Fa) ∧ ι∗J −
∑

i

Q
(a)
i |φi|

2 , (3.45)

where Q
(a)
i are the U(1)a charges of the canonically normalized matter fields φi. The full

D-term potential is now obtained by inserting (3.20), (3.26) as well as (3.41) and (3.45)

into (3.25).

3.4 The hidden flux geometry and supersymmetry breaking

In this section we study the hidden sector supporting a supersymmetry breaking flux back-

ground. Supersymmetry breaking by background fluxes has been investigated since the

advent of flux compactifications [15]. It was shown that warped Calabi-Yau compactifica-

tions with flux superpotential (2.18) admit supersymmetric vacua at points in the moduli

space where the complex flux G3 is a (2, 1) form. If this condition is violated supersymme-

try appears to be broken spontaneously. Unfortunately, in the full compactification such
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a conclusion can be too quick. The effects of the supersymmetry breaking fluxes have

to be sufficiently small and localized to ensure persisting control over the effective four-

dimensional theory and moduli stabilization. Moreover, supersymmetry breaking fluxes

can backreact on the internal geometry and render the compact manifold to be no longer

Calabi-Yau.

A simple way to obtain meta-stable non-supersymmetric flux vacua in local Calabi-Yau

geometries has been studied in ref. [19]. We will use orientifolds of the set-ups [19] to model

a supersymmetry breaking sector. In order to do that, we zoom into local regions X̂, X̂ ′ of

the compactification manifold M6. Let us assume that X̂ and X̂ ′ are locally Calabi-Yau

and get exchanged under the geometric orientifold involution σ. In order to not worry

about cross couplings connecting fields on X̂ and its orientifold image X̂ ′ we will demand

that these regions are away from the orientifold planes in M6. This will allow us to work

on X̂ keeping in mind that there exists an identical copy X̂ ′.

Considering type II string theory on the non-compact Calabi-Yau X̂ forces us to de-

couple gravity. Nevertheless, we can study the moduli space of complex structure de-

formations S = (Si), i = 1, . . . , h2,1(X̂) by analyzing the variations of the holomorphic

three-form Ω(S). Let us focus on the cases where X̂ contains a number of compact three-

cycles Ai with S3 topology. A simple example X̂ is obtain as deformations of a fibered A1

singularity [45]. Such a local geometry is given by a complex equation in C
4 of the form

u2 + w2 + v2 + pm(t)2 + fm−1(t|S) = 0 , pm = g
∏

i

(t − ai) , (3.46)

where the subscripts indicate the degree of the polynomial functions in t. The local geom-

etry (3.46) can be described as follows. If fm−1(t|S) = 0 one obtains m nodal singularities

of the local form (4.4) at u = w = v = 0 and the roots ai, i = 1, . . . ,m of pm(t). The

fm−1(t|S) destroys the factorization in t − ai and deforms the nodes into m S3’s denoted

by Ai. These S3’s are homologically distinct and their size can be parameterized by m

independent complex structure deformations S. In order to make contact to the discussion

of section 3.2 we note that Ai should include the cycles Ai introduced in (3.13). However,

in full analogy to the discussion of the visible sector in section 3.3, the relations (3.12) only

arise through the embedding of X̂ and X̂ ′ into the global non-Kähler space M6.

The fact that X̂ and its orientifold image are Calabi-Yau allows us to use N = 2 special

geometry to describe the moduli space spanned by S. One introduces the non-compact

cycles Bi which are the symplectic duals to the compact three-cycles Ai in X̂ . This is

possible if one introduces a cutoff Λ0 to regulate integrals over X̂ . The periods of Ω are

thus given by

Si =

∫

Ai

Ω , ∂iF =

∫ Λ0

Bi

Ω , (3.47)

where ∂iF = ∂SiF , and special geometry ensures the existence of a holomorphic pre-

potential F(S). For the fibered A1 singularity (3.46) the B-periods ∂iF have been computed

in ref. [45]. At leading order they take the simple form

2πi∂iF = Si

[

log

(

Si

p′m(ai)Λ2
0

)

− 1

]

+
∑

i6=j

Sj log

(

∆2
ij

Λ2
0

)

+ . . . . (3.48)
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Here p′m(ai) is the first derivative of pm introduced in (3.46) evaluated at the root ai, and

∆ij = ai − aj is the complex distance between the nodes in the singular X̂ .

In the N = 2 theory the complex scalars Si sit together with U(1) vectors Ai =
∫

Ai
C4

in vector multiplets. Note that on the orientifold image X̂ ′ we can similarly introduce the

periods (S′i, ∂′
iF) on the image cycles (A′

i,B
′i). The orientifold projection (3.10), (3.11)

ensures that the N = 2 vector multiplets (Si, Ai) and (S′i, A′i) split into N = 1 chiral

multiplets with complex scalars si = (Si − S′i)/2 and N = 1 vector multiplets with Ai
H =

Ai +A′i (Ai −A′i = 0). As in (3.17) the orientifold locus is given by Si
+ = (Si +S′i)/2 = 0,

while the condition ∂F/∂Si
+ = 0 automatically arises on the orientifold locus due to the

symmetries of F . The orientifolded four-dimensional effective theory will be a rigid N = 1

supersymmetric theory.

Restricting the theory to the orientifold moduli space parameterized by s, the N = 1

metric remains rigid special Kähler with Kähler potential

K(s, s̄) =
i

2
(sj∂s̄j F̄ − s̄j∂sjF)S+=0 . (3.49)

The Kähler metric is simply given by Kī = Im(∂2F/∂si∂sj) restricted to S+ = 0. The

holomorphic function fH
ij (s) = −i∂2F/(∂Si

+∂Sj
+) for S+ = 0 is the gauge-kinetic coupling

function of the U(1) vectors Ai
H as in (3.20). In order to allow for U(1) mediation the

embedding of X̂ and X̂ ′ into the compact space M6 has to ensure that Ai
H combines with

a visible U(1) vector Ai
V into a light and massive eigenstate Ai, Ai

h as in (2.11). Upon

integrating out AK
h as in section 2, only AK remains in the low energy theory and has an

effective gauge-coupling fKL given at lowest order the sum of the visible and hidden f ’s as

in (2.12).

Let us turn to the scalar potential for s. In rigid N = 1 supersymmetry it takes the

form

V = Kī∂iW∂̄W̄ +
1

2
(Ref)−1 ijDiDj , (3.50)

where ∂iW = ∂siW , and Di is the D-term for the light U(1) vector Ai. The superpotential

W arises due to a non-trivial flux background and using (2.18) is given by

W = 2(αi si + N i ∂siF)S+=0 , (3.51)

where the factor 2 arises due to the fact that there is an orientifold image of X̂ in X̂ ′. The

flux quanta appearing in (3.51) are given by N i =
∫

Ai
F3 and αi = −

∫

Bi(F3 − τH3), where

F3 and H3 are R-R and NS-NS three-form fluxes. Here τ is complex dilaton-axion (3.21)

which, in the compact set-up, can be stabilized supersymmetrically by other background

fluxes [46]. As in section 2 the leading contribution to the gaugino masses M̃ ij of the light

U(1) vector multiplets is given by the generalization of (2.4) with (2.12). Therefore, if

there exists a non-supersymmetric minimum of the potential (3.50) the F-term Fm will be

non-vanishing and contribute to M̃ ij .

A few comments concerning the presented outset are in order. Firstly, note that the

described flux background was argued to be large-N dual to a set-up where the S3’s are

replaced by P
1’s via geometric transition. The fluxes Ni correspond to the rank of the
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gauge-group of Ni D5 or anti-D5 branes wrapped on the ith P
1. The gauge-coupling

function of the branes on the large-N dual of X̂ at the scale Λ0 is given by α(Λ0) = αi

for all stacks of branes. Secondly, note that the orientifold projection maps D5 to anti-D5

branes with the identification N i = −N ′i and αi = −α′
i, since the fluxes F3 and H3 are

odd under the orientifold involution. This implies that if the gauge-theory obtained from

X̂ arises from D5 branes only, the gauge-theory from X̂ ′ is due to anti-D5 branes. The

five-branes on X̂ ′ have to wrap flopped P
1’s similar to the recent discussion in ref. [37].

It was shown in refs. [19], that on geometries (3.46) one can indeed find meta-stable

supersymmetry breaking flux vacua of (3.50). In order to simplify the discussion we will

consider the cases m = 1 in the fibered A1 singularity (3.46), such that each of the local

Calabi-Yau spaces X̂ and X̂ ′ only admits one S3’s respectively. We will determine the

minima of the scalar potential (3.50) in the situation of small D-terms. In order to do that

we have to specify the sign of the fluxes N and Imα. If both have the same sign, there is a

supersymmetric vacuum at 〈s〉 = gΛ2
0 e−2πiα/N . Clearly, the gaugino mass M̃ vanishes in

this vacuum. The situation changes as soon as one has opposite signs of N and Imα. In

the case N < 0 and Imα > 0 one finds a non-supersymmetric minimum of V at

〈s〉 = gΛ2
0 e2πiᾱ/|N | , ∂sW = α − ᾱ . (3.52)

In this non-supersymmetric vacuum the gaugino mass M̃ is non-zero and evaluated to be

M̃ ∝ g̃2|N |/〈s〉, where g̃ is the gauge-coupling of the mediating U(1). Note that even

though this computation is very explicit and can be performed including higher corrections

to the pre-potential it typically does not lead to the right scales for M̃ and supersymmetry

breaking. This can be traced back to the fact that in the compact settings the fluxes

are actually quantized in units of α′. Since the orientifold already specifies an N = 1

supersymmetry inside the underlying N = 2 theory, a small breaking cannot occur as

in [19].

One expects that the scales can be made phenomenologically viable by placing the hid-

den singularity in a warped throat [47, 46, 48 – 50]. This implies that the ten-dimensional

metric background is of the form ds2 = e2Ads2
4 + e−2Ads2

6, where ds2
6(y) is the line element

on M6, and the warp factor e2A(y) is depending on the internal coordinates. It is straight-

forward to verify that the warp factor cancels for the four-dimensional gauge-coupling

function fH. It is also believed that the warp factor does not induce leading corrections to

the flux superpotential. However, there will be corrections to the N = 1 Kähler potential.

So far only the leading corrections have been analyzed in ref. [49], δK ∝ |s|2/3. These

dominate for small |s| such that the mass M̃ is of the form M̃ ∝ g̃2〈|s|1/3∂sW 〉. M̃ can be

small if one finds non-supersymmetric vacua for sufficiently small |s|.

Let us end with a brief comment on an alternative to the route taken here. An

interesting possibility is to model fluxed supersymmetry breaking in the hidden sector by

using the supergravity backgrounds perturbed by anti-D3 branes in a warped throat [51,

52]. The anti-D3 brane will induce a supersymmetry breaking flux as required to generate

the gaugino mass M̃ . It would be interesting to analyze such set-ups on the level of the

effective action and to study the resulting pattern of soft supersymmetry breaking terms. If

supersymmetry breaking arises in a warped throat, partial sequestering can take place and
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one expects a mixing of gravity and gauge-mediated contributions to generate the visible

soft masses.

4. Geometric realizations

In this section we discuss the geometric tools to construct internal manifolds with a hidden

and visible sector. These sectors are realized near singularities of Calabi-Yau manifolds

which become non-Kähler by the mechanism discussed in section 3.1. We start with a

warm-up by recalling some basics on nodal singularities in section 4.1. For the hidden

supersymmetry breaking sector we consider singularities with a number of deformed S3’s

in section 4.2. For the visible sector we study the geometry of del Pezzo surfaces and realize

them in simple compact Calabi-Yau spaces in section 4.3 and 4.4. The more involved

compact examples admitting both the hidden as well as a visible del Pezzo singularity are

discussed in section 5 and appendix A.

4.1 Simple nodal singularities

As a warm-up for the more involved singularities needed for the visible and hidden sector,

we will first recall some basic facts about complete intersections and briefly discuss the

simple example of the deformed or resolved conifold in quintic Calabi-Yau.

Most known Calabi-Yau spaces Y are given in terms of generically smooth embeddings

Pi(x, z) = 0 , i = 1, . . . , r , (4.1)

into a toric ambient space T∆. The case r = 1 corresponds to the special case of a

hypersurfaces, while r > 1 defines complete intersections. In (4.1) the x are the coordinates

of T∆ and z are complex deformation parameters of the polynomials. Generically smooth

means that (4.1) and

dP1 ∧ . . . ∧ dPr = 0 , (4.2)

have no solutions for generic values of the deformation parameters z and any value of x.

More precisely, the tangent space of complex structure deformations H1
∂̄
(TY ) is given in this

situation generically by the space of infinitesimal deformations def(P ) modulo the infinites-

imal automorphisms aut(T∆, P ) of the ambient space, which are compatible with (4.1). The

infinitesimal complex structure deformations can be extended to a global moduli space Mcs

without obstruction.9 As in section 3.2 and with slight abuse of notation, we call the com-

plex structure deformations z. Note that solutions to (4.2) will generically exist in subloci

of complex codimension one (or higher) in Mcs. At a codimension one locus the Calabi-Yau

manifold Y can acquire a singularity for special values of x. The most generic singularity

is a node and it will be instructive to discuss some of the basic concepts for this simple

case.

9The realization as complete intersection in particular toric ambient spaces can obstruct sometimes

elements in H1
∂̄
(TM). For simplicity we focus on complex structure deformations in H1

∂̄
(TM) that can be

realized by def(P )/aut(T∆, P ).
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For the simplest realization of these concepts consider the famous quintic surface in

the toric ambient space P
4. The quintic surface has 101 complex structure deformations

z.10 For simplicity consider the smooth one parameter family of quintics P =
∑5

i=1 x5
i −

5z
∏5

i=1 xi = 0. Here z ∈ C is an unobstructed complex structure deformation. Generically

the constraints dP = 0 and P = 0 have no solution, but at z = 1 and xi = 1, i = 1, . . . , 5

they have a solution, the conifold point. The conifold divisor z = 1 is codimension one in

the one parameter family of quintic surfaces. We find that the local singularity is a node

by expanding the defining equation of the Calabi-Yau manifold P = 0 in an affine chart

x5 = 1 for small µ = 1 − z near the singularity, i.e. at xi = 1 + ũi, i = 1, . . . , 4 with small

ũi. After a linear change of variables from ũi to (u, v,w, t), we can bring the local equation

to the normal form

f = u2 + v2 + w2 + t2 − µ(S) = 0 , (4.3)

The node occurs at µ(S) = 0, where the real three sphere S3 given by the real equation (4.3)

is contracted to zero size. Switching on µ(S) deforms the node into an S3, which can be

parameterized by a complex structure deformation S. Locally, S is given by the special

coordinate S =
∫

S3 Ω(µ). In the following we will use the letter S to denote the complex

structure deformations in the local non-compact geometries such as (4.3).

By a further transformation the node singularity (4.3) at µ = 0 can be brought in the

form

φ1φ2 − φ3φ4 = 0 , (4.4)

and admits two kinds of small resolutions by an P
1. Introducing two new projective complex

coordinates (x, y) the smooth blown up geometry can be either described by (4.4) and the

equations
(

φ1 φ3

φ4 φ2

)(

x

y

)

= 0 or

(

φ1 φ4

φ3 φ2

)(

x

y

)

= 0 . (4.5)

At the point P given by φ1 = φ2 = φ3 = φ4 = 0 the coordinates (x, y) describe a P1, while

outside the singular point P (x, y) can be eliminated to recover the geometry (4.4). The

holomorphic map

π : X̂ → X , (4.6)

from the smooth resolution X̂ to the nodal variety X is called the resolution map. It

identifies X̂ with X outside P . The resolution is called small, because the exceptional set

π−1(P ) = P
1 is of complex codimension two in the threefold. This implies that it does not

affect the canonical class. The modification is local and holomorphic and does not affect

the complex structure. As we discussed in section 3.1 the resolution is generically non-

Kähler. We have recalled in section 3.1, that even if there are δ homology relations (3.3)

among k shrinking three-cycles, there will also be many non-Kähler resolutions among the

2k resolutions defined by (4.5) if k ≤ δ [25].

10Generically a quintic constraint will have 126 deformation parameters. The dimension of Aut(P4, P ) =

C
∗
× PGL(5, C) is 25 rendering the number of complex parameters to 101.
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Lie Algebra g Polynom g(w, v) Dual coxeter no. h

Ar w2 + vr+1 r + 1

Dr w(v2 + wr−2) 2r − 2

E6 w3 + v4 12

E7 w(w2 + v3) 18

E8 w3 + v5 30

Table 3: A-D-E singularities.

4.2 The hidden singularity

In order to model the supersymmetry breaking hidden sector we have to built more com-

plicated singularities. This can be achieved by going to higher codimension in the moduli

space of a Calabi-Yau family with a large number of complex structure deformations. A

classification of the local Calabi-Yau 3-fold singularities, which allow a resolution with

trivial canonical bundle, has only been achieved in the hypersurface case [53].

4.2.1 Creating an A-D-E singularity

The most relevant examples for the hidden sector for us are non-compact Calabi-Yau

manifolds with singularities, which admit small S2 resolutions or S3 deformations. They

are of A-D-E type and given by the equation

u2 + g(w, v) + tmh = 0 , (4.7)

where g(w, v) and the dual coxeter number h of the associated Lie algebra g are listed

in table 3. The requirement for the existence of a small resolution is m ∈ N. Of course,

for (4.7) embedded into a compact Calabi-Yau manifold there will be an upper bound on

the rank of the (gauge) group associated to g that is realizable.

In the following we will study orientifold involutions on geometries with Ar singularities

for r > 1. These are obtained by fibering the Ar two-fold in table 3 over a plane C[t]

parameterized by t. The local equation of the Calabi-Yau space is now of the form [54]

P = uw −
r+1
∏

i=1

(v − vi(t)) + f(v, t|S) = 0 ,

r+1
∑

i=1

vi(t) = 0 , (4.8)

where vi(t) are polynomials in t and f(v, t|S) is a polynomial in v, t. The singular geometry

is obtained by setting f(v, t|S) = 0 and admits nodes located at u = w = 0 and v = vi(t) =

vj(t) for i 6= j. If the highest power in t in this singular Calabi-Yau space is of the form (4.7)

one finds mr(r+1)/2 nodes. The function f(v, t|S) encodes the normalizable deformations

of the singular Calabi-Yau space and is of the form [54]

f(v, t) = fm−1(t)v
r−1 + f2m−1(t)v

r−2 + . . . + f(r−1)m−1(t)v + frm−1(t) . (4.9)
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The coefficients in fi correspond to the mr(r + 1)/2 complex structure deformations S

which deform the nodes into S3’s. It is easy to see that the general form (4.8) reduces

to (3.46) for the A1 singularity. In this case one has v1(t) = −v2(t) = pm(t) and only the

first and last term fm−1(t) remain in (4.9).

4.2.2 Orientifolds of A-type singularities

We are now in the position to specify a local orientifold action on the Ar geometries (4.8)

for r = 2k. We first write (4.8) as

uw − (v − v0(t))
k
∏

i=1

(v − vi(t)) ·
k
∏

j=1

(v − ṽj(t)) + f(v, t|S) = 0 . (4.10)

Let us briefly discuss two holomorphic orientifold symmetries of (4.10). The simplest case is

a σ1 which inverts one coordinate t 7→ −t, while keeping all other directions invariant. This

involution preserves an O7 plane at t = 0, and we need to demand that it exchanges vi with

ṽi and preserves v0, f . A second possibility σ2 is to map (t, v, u,w) 7→ (−t,−v,−w, u),

such that (4.10) together with v0, f are anti-invariant and vi ↔ ṽi. This involution has an

O3 plane at t = v = u = w = 0.

The transformation properties of f(v, t|S) under σ1 or σ2 will restrict the number of

allowed complex structure deformations S. An orientifold invariant deformation in (4.9)

arises from monomials t2pvq for σ1, and monomials t2qv2p+1 or t2q+1v2p for σ2, with p, q ∈ N.

We will denote the number of such monomials by b−, since they correspond to compact

three-cycles A−
k anti-invariant under σ∗. Respectively, the number of non-allowed mono-

mials is denoted by b+, and corresponds to the number of invariant compact three-cycles

A+
i . For the local Calabi-Yau Y (A2k,m) and both involutions σ1, σ2 one has

m even: b± = b/2 , m odd: b± =
1

2
(b ∓ k) , (4.11)

where b = mk(2k + 1) is the total number of deformations in (4.9). The N = 1 spectrum

thus consists of b− complex structure deformations Sk and b+ U(1) vectors Ai
H. Finally, in

accord with (3.10), the holomorphic three-form Ω = (du ∧ dv ∧ dt ∧ dw)/dP , with P given

in (4.8), transforms with a negative sign under the orientifold involutions.

4.3 The visible singularity

For the visible sector we will consider local del Pezzo surfaces introduced in section 3.3.

In the following we will study del Pezzo singularities in compact Calabi-Yau manifolds,

their resolutions and orientifold symmetries. In addition to general local considerations,

we exemplify the techniques for an E8 del Pezzo transition starting with the compact

Calabi-Yau manifold P(18|9, 6, 1, 1, 1). Further examples are presented in section 5 and

appendices A and B.

4.3.1 The geometry of Del Pezzo surfaces

Let us first discuss the geometry of del Pezzo surfaces Bn in more detail. This com-

plements the analysis of section 3.3 and prepares us for the study of possible orientifold
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g del Pezzo elliptic fibre

D̂5 P(2, 2|1, 1, 1, 1, 1) P(2, 2|1, 1, 1, 1)

Ê6 P(3|1, 1, 1, 1) P(3|1, 1, 1)

Ê7 P(4|2, 1, 1, 1) P(4|2, 1, 1)

Ê8 P(6|3, 2, 1, 1) P(6|3, 2, 1)

Table 4: The D-E del Pezzo surfaces and their generic elliptic fibers.

g del Pezzo geometry

D̂5

y2 = x2 + xe1(w1, w2, z) + f2(w1, w2)

y2 = z2 + zg1(w1, w2, x) + h2(w1, w2)

Ê6 y3 = x3 + xyg1(w1, w2) + xf2(w1, w2) + yg2(w1, w2) + g3(w1, w2)

Ê7 y2 = x4 + x2g2(w1, w2) + xg3(w1, w2) + g4(w1, w2)

Ê8 y2 = x3 + xg4(w1, w2) + g6(w1, w2)

Table 5: The D-E del Pezzo surfaces.

involutions. Also here we will focus on the Bn with n = 5, 6, 7, 8 with associated Lie

groups g = D̂5, Ê6, Ê7, Ê8.
11 These del Pezzos are realized as hypersurfaces or com-

plete intersections in weighted projective space. Moreover, they are elliptical models, with

generic elliptic fiber realized as hypersurfaces or complete intersection. Let us denote by

P(d1, . . . , dr|w0, . . . , wm) the complete intersection of r hypersurfaces of degree d1, . . . , dr

in weighted projective space with weights w0, . . . , wm. The del Pezzo surfaces and their

generic elliptic fiber are listed in table 4.

As in sections 4.1 and 4.2 we can count the number of complex structure deformations

associated to each generic del Pezzo singularity. table 4 allows us to specify a local equation

with the singularity at the origin as displayed in table 5. One infers that the dimension of

the complex deformation spaces for del Pezzo surfaces Bn with n ≥ 5 is dimH1(TBn) =

2n−8. This can be checked, for example, for the Ê7 del Pezzo by counting 3+(4−2)+(5−

1) = 6 relevant monomials in g2, g3, g4 respectively. For the D̂5 case one needs to consider

vector polynomials.

4.3.2 The orientifold action on del Pezzo surfaces

On a compact Calabi-Yau space containing a del Pezzo surface, we are looking for a holo-

morphic involution σ obeying (3.10). In general, such involutions might not map the del

Pezzo surfaces to its own homology class, but rather induce a more complicated action.

This implies that b2
− 6= 0, since there exist positive and negative linear combinations of

11Here the corresponding Lie algebras are denote with a hat in order to distinguish these singularities

from the A-D-E singularities in section 4.2.
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homologically non-trivial four-cycles. Examples of this type have been discussed e.g. in

refs. [55]. Here we are interested in involutions σ preserving the non-trivial del Pezzo di-

visor in the compact space, but exclude the trivial case for which the del Pezzo is entirely

in the fix-point set of σ. Via the proper transform σ acts uniquely on the coordinates of

the del Pezzo surface. We are particularly interested in the action of the involutions on

H2(S, Z) of the del Pezzo surface, which we call here generically S. Ideally we like to find

invariant elements. Later on, for explicit compact examples, one needs to show that these

are in the same homology class as the 2-cycles of the hidden singularity such that we can

apply the mechanism of section 3.1 to obtain a non-Kähler space.

Let us work out the action on H2(S, Z) using the Lefschetz fixpoint theorem. The

latter states that for an automorphism σ on any S the Lefschetz number Λσ equals the

Euler number χ(Sσ) of the fixpoint set Sσ, i.e.

χ(Sσ) = Λσ ≡
∑

k≥0

Tr(σ∗(Hk(S, Z)) . (4.12)

We can use this to determine the number of ± eigenvalues of σ∗ on H2(S, Z). Clearly H0(S)

and H4(S) are invariant and the non-trivial information comes from H2(S) = H(1,1)(S). It

follows that the number of positive and the negative eigenvalues on middle homology are

b+
2 =

n − 1 + χ(Sσ)

2
, b−2 =

3 + n − χ(Sσ)

2
(4.13)

Let us start with the classification of involutions. A theorem of [56] lists all pairs of

minimal involutions (S, σ), where S is birational to P
2. Lemma 1.1 of [56] states that

minimality is equivalent to σ(E) 6= E and E ∩ σ(E) 6= ∅ for any exceptional curve E. In

addition there are various non-minimal involutions on each del Pezzo surface.12

• Ê8 del Pezzo:

Apart form an action on rational ruled surfaces one finds on the Ê8 del Pezzo the

famous Bertini involution y 7→ −y. The fixpoint set is a curve of genus g = 4

given by P(6|2, 1, 1) in the last three coordinates and the point P(6|3, 2) so χ(Sσ) =

1+2−2g = −5 and b−2 = 8. K is invariant and, in fact, −2K defines the hypersurface

in P(3, 2, 1, 1), such that that all of the E8 lattice is mapped to −E8. On the classes

one has ei 7→ −2K − ei and l 7→ −l − 6K. One can also see that the 240 rational

curves table 2 are reflected on the middle configuration. The Bertini involution is the

only minimal involution on the Ê8 del Pezzo.13

As a non-minimal involution we can act by w1 7→ −w1. The fix point set is a curve

of genus g = 1 given by P(6|3, 2, 1) and three points P(6|2, 1). Hence b+
2 = 5, b−2 = 4.

• Ê7 del Pezzo:

12It turned out that automorphisms of del Pezzo surfaces have been recently investigated more extensively

in the mathematical literature [57].
13The Bertini involution has striking analogy with the corresponding involution on the Enriques surface

used in the orientifold model of ref. [58].
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Very similar to the Bertini involution is the Geiser involution on the Ê7 del Pezzo

which also acts like y 7→ −y. The fixpoint set is a curve of genus g = 3 given by

P(4|1, 1, 1) in the last three coordinates. This implies that b−2 = 7, and since −K

is invariant, we have E7 7→ −E7, i.e. ei 7→ −K − ei and l 7→ −l − 3K. Again

the 7, 21, 21, 7 rational curves in table 2, are reflected into themselves. The Geiser

involution is the only minimal involution on the E7 del Pezzo.

A non-minimal involution is obtained by the action w1 7→ −w1. It yields a genus

g = 1 curve P(4|2, 1, 1) as fixpoint locus, and two points P(4|2, 1). This yields b+
2 = 4

and b−2 = 4.

• Ê6 del Pezzo:

Also on the Ê6 del Pezzo we can act with y 7→ −y. However, there are no minimal

involutions on this del Pezzo. The configuration P = f3(x,w1, w2)+y2f1(x,w1, w2) =

0, allowing this automorphism, is still generically smooth. By Bertinis theorem the

non-vanishing of dP outside (x : y : w1 : w2) = (0 : 0 : 0 : 0) has to be checked only

on the base locus, which is given by all possible unions of the coordinate hyperplanes

xi = 0. The fixpoint locus is a genus g = 1 curve P(3|1, 1, 1) in the last three

coordinates and the point (1 : 0 : 0 : 0), which also lies on P = 0. Hence b+
2 = 3 and

b−2 = 4.

A second automorphism on the E6 del Pezzo is given by (y 7→ −y, x 7→ −x). The

invariant equation P = g3(w1, w2) + x2f1(w1, w2) + xyg1(w1, w2) + y2h1(w1, w2) = 0

is likewise smooth as seen by checking transversality on the base locus. The fix point

locus is given by P(3|1, 1) in the first two coordinates, i.e. 3 points, and w1 = w2 = 0,

which is a projective line (y : x). Hence b+
2 = 5 and b−2 = 2.

• D̂5 del Pezzo:

On the D̂5 del Pezzo we can act by y 7→ −y which has as a fixpoint set only the

g = 1 curve P(2, 2|1, 1, 1, 1) in the last four coordinates, i.e. b+
2 = 2 and b−2 = 4.

The configuration is smooth if not all 2 × 2 minors of ∂Pi

∂xj
vanish on the base locus

unless (x : y : z : w1 : w2) = (0 : 0 : 0 : 0 : 0). This is the case, if we chose for

P1 =
∑5

i=1 aix
2
i and P2 =

∑5
j=1 bjx

2
j with generic coefficients ai, bj

A second involution acts as (y 7→ −y, x 7→ −x). In this case we get the fixpoint locus

P(2, 2|1, 1, 1) in the last three coordinates, which are 4 points. We conclude then that

b+
2 = 4 and b−2 = 2.

4.3.3 Creating a del Pezzo singularity

In order to realize a del Pezzo in a compact Calabi-Yau manifold we study a del Pezzo

transition. Similar to the simple transitions of section 4.1 one starts by fixing a number

of complex structure deformations to generate a del Pezzo singularity. There exist whole

chains of such transitions, which are best understood in a toric framework as discussed

in appendices A and B. Here we will study only one particular example [59], which is of

relevance to the large volume compactifications of [60].
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Let us start with the an elliptic fibration over P
2 which is represented as a degree 18

hypersurface in the weighted projective space P(9, 6, 1, 1, 1) as [61]

y2 = x3 + xf12(w) + f18(w) , (4.14)

where (x) = (y, x,w1, w2, w3) are the weighted coordinates. We can count the complex

structure deformations modulo automorphism of the ambient space by enumerating the

elements in R = C
w[x]/J , where C

w[x] is the ring generated by all monomials in x and

the left ideal J is generated by ∂P
∂xi

, i = 1, . . . , 5 with P = y2 − x3 − xf12(w)− f18(w). We

see that y2 is in the ideal, x3 is modulo the ideal equivalent to xf12 with 91 monomials and

from the 190 monomials in f18 the 9 of the form w18
i , w17

i wj are modulo the ideal equivalent

to such with lower powers in wi. This yields h(2,1) = 190 + 91− 9 = 272 complex structure

deformations, which can be parameterized by the complex coefficients of the independent

generators of R. Note that different to the powers w17
i wj, but similar to the powers y1, x3

we write the powers of w18
i with coefficient one to keep P transversal.

To force near the point p = (0, 0, 0, 0, 1) inside P(18|9, 6, 1, 1, 1) a singularity of the

form Ê8 in table 4 we need to set the coefficients of the homogeneous of degree 12 in w

monomials xwm
1 wn

2 wk
3 with 9 ≤ k ≤ 12 to zero. This yields 10 conditions. Further we

have to set the coefficients of the homogeneous degree 18 monomials wm
1 wn

2 wk
3 in g18 for

13 ≤ k ≤ 18 to zero. Naively these are 21 terms. However the 2 terms occurring for w17
3

are already set to zero as they are not independent modulo the ideal. The coefficient of

the term w18
i is constant in the standard parameterization of (4.14). We have to use a

non standard parameterization for it to set it to zero. It can be easily shown that the

elements of the ring that we are counting are still independent. So in total we can force the

singularity by imposing 10 + 21− 2 = 29 conditions on the complex structure parameters.

In the next step one has to resolve the del Pezzo singularity by a finite-size del Pezzo

surface. The difference in the resolution is that, unlike the surgery in codimension two

encountered in sections 4.1 and 4.2, here we blow up a divisor and the triviality of the

canonical bundle of the resolved space has to be checked explicitly.

4.3.4 Triviality of the canonical bundle in the resolution

Toric geometry is the standard and most general procedure to blow up the singularity at

p and to check that the canonical class remains trivial. Let us first discuss a simpler class

of examples, which includes the one of section 4.3.3, and consider a Calabi-Yau space M

obtained as m-fold cover of a Fano threefold D [62]. Mori and Mukais classification list

gives plenty of choices for D [63]. In an affine coordinate patch parameterized by y, x and

w the defining equation of M is of the form

ym = g(x,w) . (4.15)

We choose the complex structure parameters in g(x,w) so that a del Pezzo singularity of

the form Ê6, Ê7 or Ê8 occurs.

Now the blow up can be described as follows [62]. The branch locus B is defined as

the zero locus of g(x,w). Blowing up the singular point P at x = w = 0 in B yields a
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complex two-dimensional exceptional divisor ED = π−1(P ) in the smooth Fano threefold

D̂. Here π : D̂ → Ds is the resolution map from the smooth to the singular variety14. The

multiple covering of the exceptional divisor branched at the proper transform B̃ of B on

ED yields the blown-up surface EM in the resolved Calabi-Yau threefold M̂ . As always the

blow-up is local and holomorphic and does not change the complex structure. However,

the exceptional divisor EM in M̂ is of codimension one and hence the canonical class K

can be modified. If ϕ : M̂ → D̂ is the m-fold covering map, then the canonical class of the

resolved manifold is

KM̂ = ϕ∗

(

KD̂ +
m − 1

m
B̃

)

. (4.16)

The calculation of KD̂ is easily done using the local geometry. The proper transform B̃

is given by B̃ = π∗B − ordP B · ED, where ord is the order of vanishing of g in (4.15).

Using (4.16) the condition KX̃ = 0 can be ensured in explicit examples.

In particular, in the transition of section 4.3.3 we have m = 2 as seen from (4.14).

The blow up corresponds to a Ê8 del Pezzo and B is the projective bundle B = P(OP2 ⊕

OP2(−6)). The upshot of the more general toric argument is that we blow up one divisor

DE in T∆ by adding a point to the polyhedron ∆. The new ∆ is still reflexive and the proper

transform of the hypersurface constraint is the anti-canonical class in it. This implies that

the canonical class of the resolved space is trivial which immediately generalizes to the

complete chain of del Pezzo transitions.

4.4 Numerical changes of the Euler characteristic

The change of the Euler characteristic ∆χ in the transition M → M̂ can be understand

completely locally in terms of the singularity and in particular its Milnor number and the

Euler number of the exceptional divisor EM in M̂ . Let us discuss this here more system-

atically for the singularities encountered so far. For quasihomogenous surface singularities

f = 0 the Milnor number was given in ref. [64] as µ = dimO/Jf . If the leading terms are

fermat, i.e. of the form
∑k

i=1 xni

i , the Milnor number is given by

µ =

k
∏

i=1

(ni − 1) . (4.17)

The change of the Euler characteristic is determined as follows. Taking the singular point

out of X the Euler characteristic changes by ∆χ = µ − 1, while gluing in the exceptional

divisor we get [62]

∆χ = µ − 1 + χ(EX) . (4.18)

The change ∆χ is easily determined for the examples we considered so far. For the

node (4.3) one uses (4.17) to derive µ = 1. So every blow-up increases the Euler character-

istic by χ(P1) = 2. One can also consider the blow-up of the A-D-E surface singularities in

table 3. The Milnor number is r = rank(g). In total, for the singular threefold (4.7) one

derives µ = r(mh−1) using (4.17). The resolving manifold is a P
1-tree forming the Dynkin

14See also the discussion of (4.6) for the quintic.
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diagram of g, its Euler number is 2 · r− (r−1) = r+1, where r−1 comes from subtracting

the intersection points, hence ∆χ = µ−1+(r+1) = mhr. For the Ar singularity we find by

using table 3 that ∆χ = m(r + 1)r. Indeed, ∆χ/2 is precisely the number of deformations

of the Ar singularity in (4.9) as expected by geometric transition.

Most importantly, we can determine ∆χ for the visible sector del Pezzo surfaces Bn

listed in 4. For the Ê6, Ê7, Ê8 del Pezzos we calculate using 4 and (4.17) that µ = 16, 27, 50.

The Milnor number for the D̂5 del Pezzo is µ = 9. Hence, given the Euler number χ(Bn) =

3 + n, we get ∆χ = 16, 24, 36, 60 for Bn, n > 4. In general, we can write

∆χ = 2h(g), (4.19)

where h is the dual Coxeter number of the algebra g. For the relevant cases h(g) is listed

in table 3. We can now make use of ∆χ to determine the rank of the map Π given in (3.35)

which specifies the embedding of the del Pezzo surface Bn into a Calabi-Yau manifold. One

first has to count the number of complex structure deformations ∆h(2,1) which are fixed by

specializing to a del Pezzo singularity such as the ones of table 5. The rank of Π is then

simply given by rank(Π) = 1
2∆χ − ∆h(2,1).

5. Global engineering of U(1) mediation

In this section we explicitly construct orientifolds of compact internal manifolds which ad-

mit the desired properties to allow for U(1) mediation of supersymmetry breaking. We

illustrate the general strategy by analyzing an explicit compact example permitting a vis-

ible E6 del Pezzo surface and a hidden singularity with S3’s arising from deformations of

conifold singularities. Many checks of the geometric requirements are best analyzed in a

toric realization which we will provide in appendix A.2. It should be noted that similar

examples can be constructed straightforwardly within the toric framework as we show in

appendix A.3.

Let us first summarize the steps required in realizing the geometrical outset for sce-

narios of U(1) mediation:

(1) Find a Calabi-Yau manifold with the desired singularities for the hidden and visible

sector. Ensure that the visible singularity can be resolved by, for example, a del Pezzo

surface S as described in section 3.3 and 4.3. The hidden singularity can be of A-D-E

type, and should contain conifolds which can be either resolved by two-spheres or

deformed by three-spheres as discussed in sections 3.4 and 4.2.

(2) There should be topological relations between cycles in the hidden and visible sector.

These topological relations can analyzed if the hidden and visible singularities are

resolved by two-spheres and the del Pezzo surface respectively. More precisely, some

of the two-cycles in the del Pezzo S should be non-trivial in the Calabi-Yau space

and homologous to the hidden two-spheres. Upon geometric transition of some of the

hidden two-spheres to three-spheres as in section 3.1, there are three- and four-chains

connecting the hidden and visible sector.
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(3) One needs to find an appropriate geometrical orientifold symmetry σ on the internal

space. σ has to keep the del Pezzo class invariant. As discussed in section 4.3.2, there

will be always σ-positive and negative two-cycles in S if σ is non-trivial on S. One

of the positive two-cycles in S should be non-trivial in the Calabi-Yau space and in

topological relation to the hidden two-spheres. Some of the hidden two-spheres are

exchanged under σ such that hidden U(1) vectors arising upon geometric transition

remain in the spectrum. Upon integrating out the massive moduli there will be light

U(1) vector multiplets coupling to both the hidden and visible sector as discussed in

section 2.2 and 3.3.

(4) Local engineering of the background fluxes and gauge groups. To make such a sce-

nario fully realistic one needs to place appropriate branes on S to get an extension

of the MSSM. In the hidden sector one performs a geometric transition of the resolv-

ing two-spheres and places appropriate fluxes on the resulting three-cycles to break

supersymmetry. It has to be ensured that the scales are appropriate to yield an

interesting set of soft terms for the MSSM sector.

In the following we will realize steps (1), (2) and (3) for one compact example. The

geometric outset for two further examples are presented in appendices A.1 and A.3. Our

first investigation will start from the compact Calabi-Yau obtained from a singular quintic

as considered in ref. [65]. It is realized via the complete intersection

(

P1s + P2t
)

u +
(

Q1s + Q2t
)

v = 0 ,
(

R2s + R3t
)

u +
(

S2s + S3t
)

v = 0 , (5.1)

in an ambient space defined as P
1×P(OP3(−1)⊕OP3). Here Pi, Qi, Ri and Si are monomials

of degree i in the complex projective coordinates w = (w1, w2, w3, w4) on the P
3 base, while

the coordinates on the P
1 fibers are denoted by s, t. The P

1 factor has coordinates u, v.

The toric data of this Calabi-Yau manifold YE6 are summarized in appendix A.2. YE6 is a

K3 fibration with

h(1,1) = 3 , h(2,1) = 59 , [c2]1 = 44 , [c2]2 = 50 , [c2]3 = 24 . (5.2)

where [c2]i =
∫

YE6
c2 ∧ ωi with ωi being a basis of H2(Y, Z). The non-vanishing triple

intersections κijk =
∫

YE6
ωi ∧ ωj ∧ ωk are computed to be

κ111 = 2, κ112 = κ122 = κ222 = 5, κ113 = 4, κ123 = κ223 = 6 . (5.3)

In the following we will check that YE6 admits in its moduli space two singularities of

the desired type. This includes an Ê6 del Pezzo at (s, t, u, v, w) = (1, 0, 0, 0, 0) as well as 32

conifold singularities. To see this one considers a point where at least one of the functions

in front of u, v is non-zero and eliminates u, v in (5.1) to

(

P1s + P2t
)(

S2s + S3t
)

−
(

R2s + R3t
)(

Q1s + Q2t
)

= 0 (5.4)

The term in front of s2 yields a non-generic cubic surface in coordinates ω of P
3 given by

P1S2 − R2Q1 = 0 . (5.5)
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From table 4 we identify this as a non-generic Ê6 del Pezzo surface. To identify the 32

resolved conifolds we compare (5.4) and (5.1) to the simple singular conifold (4.4) and its

resolution by a two-sphere (4.5). We see that the singular conifolds are obtained if all

four factors in front of u, v in (5.1) vanish simultaneously. In fact, generically there are

32 conifold points where these vanishing conditions can be satisfied. At generic points on

the moduli space YE6 is smooth and the conifolds are resolved by 32 two-spheres. The

Calabi-Yau space YE6 can be obtained via geometric transition from a quintic surface by

enforcing the Ê6 del Pezzo and 32 conifolds by fixing ∆h(2,1) = 42 of the 101 quintic complex

structure deformations [65]. These transitions are discussed torically in appendix A.2.

In the next step we need to check that there is a two-cycle in the Ê6 del Pezzo B6

which is non-trivial in YE6 and in the same homology class as the 32 resolved conifolds. We

will explicitly identify the two-cycles in B6 which are non-trivial in YE6. Note that since

h(1,1) = 3 there are in total three non-trivial two-cycles in YE6, which are denoted by ΣB,

ΣK and Σα. The two-cycle ΣK
∼= −K corresponds to the anti-canonical class of the Ê6 del

Pezzo embedded into YE6. In case this is the only class non-trivial in YE6 one will find 27

genus zero curves in its homology class. These are the 27 lines in table 2, which by (3.34)

have genus zero and degree one with respect to −K. In fact, we can compute the genus

zero BPS invariants nn,m,l by using the toric description of YE6 in appendix A.2. The three

indices of nm,n,l indicate the degree of the curve with respect to ΣK , ΣB and Σα. If ΣK is

the only non-trivial class of B6 in YE6 one has n1,0,0 = 27. However, one instead computes

n1,0,0 = 10 , n1,0,1 = 16 , n1,0,2 = 1 , n0,0,1 = 32 . (5.6)

Since YE6 can be realized torically as in appendix A.2 the BPS numbers can be obtained

with the methods explained in refs. [66].15 This shows that there is actually a second curve

class Σα
∼= α in the del Pezzo surface which is non-trivial in YE6. In accord with (5.6) one

identifies

α = 2l − e1 − e2 − e5 − e6 , α · K = −2 . (5.7)

where l, ei and K are introduced in section 3.3. Using (3.34) one checks that there are 10,

16 and 1 curves of table 2 with degree 0, 1 and 2 with respect to α. We can write this

as 27 = 100 + 161 + 12, where the subscripts correspond to the degree with respect to

α. This decomposition corresponds to the splitting of the 27 of E6 into representations

of U(1) × D5. We can shift α by the other non-trivial class K such that the new linear

combination is in the E6 lattice. Defining α′ = 3α + 2K one has K ·α′ = 0. The new class

α′ induces the splitting

27 = 10−2 + 161 + 14 , (5.8)

where the subscripts indicate the degree with respect to α′ and represent the U(1) charge

in the usual normalization [67]. The last BPS invariant n0,0,1 in (5.6) shows that there

are actually 32 genus zero curves in the homology class of Σα. These are the 32 resolved

conifolds discussed above. This establishes the desired topological relation of the del Pezzo

to the candidate hidden singularities.

15The explicit calculations are implemented in the program Instanton, which uses the toric data as input

parameters.
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Let us now turn to the orientifold projection. As we have seen in section 4.3.2, there

are two non-trivial orientifold projections on the Ê6 del Pezzo. One of them inverts two

coordinates and thus, in order to ensure (3.10), would have to be accompanied by an

inversion of an additional coordinate in the Calabi-Yau embedding. In order to avoid this

complication, we will focus on the second involution which only inverts one coordinate, say

w4 → −w4 in (5.1). In general, a Ê6 del Pezzo surface admitting this involution can be

brought to the form

w2
4(α w1 + β w2 + γ w3) + w3

1 + w3
2 + w3

3 + δ ω1ω2ω3 = 0 . (5.9)

This del Pezzo can be brought to the non-generic form (5.5) by fixing two of the four

complex structure deformations α, β, γ, δ. Slightly redefining coordinates one has

w1(w
2
1 − 3w1w3 + δ w2w3 + 3w2

3) + w2(w
2
2 − δ w2

3 + β w2
4) = 0 . (5.10)

Next, we can determine a basis of H+
2 (B6) ⊕ H−

2 (B6). Recall from section 4.3.2 that

b2
+ = 3, b2

− = 4 for a del Pezzo surface with the above involutive symmetry. Since the canon-

ical class of the del Pezzo is invariant under σ, one can embed the orientifold involution into

the Weyl group of E6. σ will be represented by four Weyl reflections σa : β 7→ β+(β ·ra) ra

on four mutually orthogonal roots ra [68]. Up to coordinate redefinitions one finds

σ∗ =
4
∏

a=1

σa , r1 = αmax , r2 = α1 , r3 = α3 , r4 = α5 , (5.11)

where αi are the simple roots defined in (3.32), and αmax = 2l−
∑

i ei is the maximal root

of E6. It is easy to check that the Σ−
a = ra are a basis of H−

2 (B6). Such a correspondence is

a general fact for involutions in a Weyl group [68]. A basis of H+
2 (B6) is given by Σ+

3 = −K

as well as the two elements

Σ+
1 = 2α2 + α1 + α3 , Σ+

2 = 2α4 + α3 + α5 . (5.12)

Finally, we can express the element α′ given after (5.7) in this basis, α′ = 2Σ+
2 −2Σ+

1 . This

shows that the second del Pezzo two cycle Σα, which is non-trivial in the full Calabi-Yau

space, is also positive under the orientifold involution. Hence, for the Calabi-Yau orientifold

space (YE6, σ) we have h
(1,1)
+ = 3, h

(1,1)
− = 0. The dimensions of h

(2,1)
± can now be evaluated

by using the Lefschetz fixpoint theorem as in (4.12).

In order that YE6 is a candidate to permit U(1) mediation, we have to show that there

are actually hidden U(1) vectors in the spectrum. To do that, one shows that the 32 two-

spheres in the homology class of Σα are not all mapped to themselves under σ. In fact,

one checks that generically only two conifold points are invariant under w4 → −w4, while

the remaining 30 points are pairwise identified. This will remain to be the case if these

singularities are resolved by two-spheres or deformed by three-spheres. Finally, one needs to

proceed as in section 3.1 to construct the non-Kähler space M6. One performs a geometric

transition replacing the 30 pairwise identified hidden two-spheres by three-spheres. Clearly,

the resulting three-spheres will also be identified pairwise under the involution σ, such that

several U(1) vectors from the R-R four-form remain in the spectrum. Since the two-

spheres were in topological relation with the del Pezzo, the visible and hidden sector will

be naturally connected via three- and four-chains in the non-Kähler space M6.
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6. Conclusions

In this paper we investigated a promising mediation mechanism for supersymmetry break-

ing due to background fluxes in Type IIB string theory. Our motivation was the generic

presences of U(1) vectors in semi-realistic string constructions of extended Supersymmetric

Standard Models. We argued that under certain topological conditions these U(1) vector

multiplets can couple to a hidden supersymmetry breaking flux geometry. Non-vanishing

F-terms can render the gauginos massive which then induce phenomenologically interesting

soft masses in the visible sector.

In order to find explicit realizations of such scenarios various requirements on the

underlying compactification manifolds have to be met. Firstly, it should contain four-

cycles on which intersecting space-time filling D-branes can provide an extension of the

Standard Model. Promising candidates for such constructions are del Pezzo surfaces and

we have provided a list of concrete compact Calabi-Yau manifolds admitting these as

exceptional divisors. Secondly, the internal manifold should admit singularities which can

support a supersymmetry breaking flux background. These are typically present in most

of the known Calabi-Yau manifolds. However, the cycles in this hidden flux geometry have

to be in topological relation with the visible sector geometry. In sections 4 and 5, we

have summarized the general strategy to construct viable orientifold geometries for U(1)

mediation.

Hypersurfaces and complete intersections provide a vast class of compact examples in

which the required local geometries can be embedded and studied in detail. Combining

the counting of the rational holomorphic curves in the compact Calabi-Yau manifold with

the representation theory of the Weyl group acting on the curves in the del Pezzo surface,

we were able to identify globally realized classes and their topological relations. Using the

Lefschetz fixpoint theorem together with the embedding of the orientifold involution into

the Weyl group, allows the determination of the parity of the curve classes. This provides

the ground for explicit model building in type IIB orientifolds and F-theory. The described

techniques are useful not only in modeling U(1) mediation. In particular, it should be

possible to embed the geometric realizations of dynamical supersymmetry breaking [69]

into the explicit Calabi-Yau orientifolds investigated in this work.

Let us comment on some of the open questions and directions for future work. In our

investigation, we have not addressed the stabilization of moduli in detail. For type IIB

orientifolds there are various known mechanism to render all geometric moduli massive.

However, their stabilization might not entirely decouple from the low energy phenomenol-

ogy investigated here [70]. The constructed compact orientifolds can, for example, support

KKLT like vacua [39] or the large volume vacua studied in [60]. In particular, one can

show that some of the examples realizing del Pezzo transitions as in section 4 and 5 have

the desired properties for the large volume scenarios. It will be interesting to work out

the explicit N = 1 data for these examples and to study the supersymmetry breaking and

moduli stabilization in more detail.

In order to get the correct scales of supersymmetry breaking it is often crucial to also

include warping effects into the set-up. In particular, a hidden flux sector will generically
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break supersymmetry at a rather large scale. It is an interesting problem to study U(1)

mediation of supersymmetry breaking in the presence of strongly warped throats. For this

a better understanding of Kaluza-Klein reduction in warped backgrounds will be crucial.
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A. Toric realizations of the visible and the hidden singularities

A.1 K3 fibration with an Ê6 del Pezzo and 16 conifolds

In this appendix we will discuss the principles of toric transitions starting with the Calabi-

Yau which is realized as the quintic hypersurface in P
4. This manifold allows an Ê6 del

Pezzo transition as well a transition through a singularity, which can serve as the hidden

sector. Moreover, for the final Calabi-Yau there is a topological relation between a curve

class on the del Pezzo surface, which serves as the visible sector, and a curve class in the

hidden sector. This topological relation can be studied by computing the relevant BPS

invariants and arguing as in section 5.

It turns out that such transitions are frequently realized for Calabi-Yau in toric ambient

spaces. Let us recapitulate the essentials of the toric construction. We list in the following

table in the first column the data of the reflexive polyhedra involved. More precisely the

polyhedron ∆ which yields P∆ = P
4, the ambient space of the quintic, is given by the

convex hull of the first five points ν1, . . . , ν5. If we add the point ν6 we enforce transition

I. We get as convex hull of the points ν1, . . . , ν6 a polyhedron ∆(2), which defines as P∆(2)

the ambient space of a Calabi-Yau with an Ê6 del Pezzo. Similarly, we can consider the

convex hull of the points ν1, . . . , ν5, ν7 to enforce transition II. Finally, if we consider all 7

points ν1, . . . , ν7 we are dealing with transition III in the table. In the following we will

discuss these transitions in more detail.

As usual we define P∆ by the Cox coordinate ring as P∆ = {C[x1, . . . , xn]−SR}/(C∗)r.

Here the C
∗ actions are specified by the vectors l

(p)
k , k = 1, . . . , r as xi 7→ (µk)

l
(p)
k,i xi, with

µk ∈ C
∗. The SR is the Stanley Reisner ideal, which is also specified by the l

(p)
k , see [71]

for details. The index (p) on l
(p)
i labels the Calabi-Yau phase under consideration after

the respective transition. Note that the l
(p)
k encode relations among the points in the

polyhedron namely
∑n

i=1 l
(p)
k,i νi = 0, where n is the number of relevant points. Using

suitable triangulations of the polyhedron we have specifically chosen them so that in the

Calabi-Yau phase indexed by (p) to every l
(p)
k , k = 1, . . . , h(1,1) there is an uniquely associate

Kähler modulus vk of a curve in the Calabi-Yau, so that the Kähler cone is given by vk > 0.
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quintic transition I transition II transition III

l(1) l
(2)
1 l

(2)
2 l

(3)
1 l

(3)
2 l

(4)
1 l

(4)
2 l

(4)
3

points in polyhedra x0 -5 -3 -2 x0 -4 -1 x0 -2 -2 -1

ν1 =( -1, 0, 0, 0) x1 1 x1 1 0 u1 0 1 u1 0 0 1

ν2 =( 0, -1, 0, 0) x2 1 x2 1 0 v1 1 0 v1 1 0 0

ν3 =( 0, 0, -1, 0) x3 1 x3 1 0 v2 1 0 v2 1 0 0

ν4 =( 0, 0, 0, -1) x4 1 s 0 1 v3 1 0 s 0 1 0

ν5 =( 1, 1, 1, 1) x5 1 x4 1 0 u2 0 1 u2 0 0 1

ν6 =( 0, 0, 0, 1) t -1 1 t -1 1 0

ν7 =( 0, 1, 1, 1) r 1 -1 r 1 0 -1

Table 6: Transitions from the quintic to a K3 fibration with Ê6 del Pezzo and 16 conifolds.

The hypersurfaces or complete intersections represent the anti-canonical class of P∆

and are easily defined by the l
(p)
k , k = 1, . . . , r. In the case of hypersurfaces the polynomial

P (x), whose zero section defines the Calabi-Yau in the coordinates x1, . . . , xm is simply

such that x0P (x) is totally invariant under the (C∗)r actions.

Each point point of ∆ corresponds to a toric divisor given as the zero locus of the

corresponding coordinate, e.g. ν1 corresponds to x1 = 0 also called D1. Among the divisors

there are relations
∑n

i=1 νi,kDi = 0, where νi,k is the k component of νi. The Chern class of

the ambient space is c(TP∆) =
∏n

i=1(1+Di), the canonical class is K =
∑n

i=1 Di. The total

Chern class of the Calabi-Yau M , which is specified by −K, is c(TM) = c(TP∆)/(1 + K).

The k-th Chern class ck are then the terms homogeneous of order k in the Di in the formal

expansion of c(TM). So by construction c1(TM) = 0.

In the formalism of reflexive pairs (∆,∆∗) the transitions are very easily understood.

Points in ∆ count the Kähler parameter, while points in ∆∗ counts complex parameters.

If we add the point ν6 to enlarge ∆ = ∆(1) to ∆(2), we create a del Pezzo singularity in the

first 4 coordinates, because the enlargement of ∆ enforces the vanishing of 11 coefficients

of the monomials, which correspond to complex structure deformations in the Newton

polynom of ∆∗. So ∆(2) ⊃ ∆, which counts the Kähler parameter, becomes larger while

its dual ∆(2)∗ ⊂ ∆∗, which counts the complex parameters, becomes smaller.

In the table we have chosen coordinates which are most intuitive to understand the

precise form of the polynomial constraint after the different transitions. For the quintic

P (x) is simply given by a homogeneous polynomial of degree five in the first five variables.

Then after the transition I the constraint equation looks like

P = x0

2
∑

k=0

p3+k(x)s2−ktk . (A.1)

Here the pk(x) are homogeneous polynomials of degree k in x1, . . . , x4. It is obvious that

at t = 0 and s = 1 we get a E6 del Pezzo singularity. General s, t with the above C
∗ actions

correspond to the blow up of the del Pezzo singularity. Adding l(1) = l
(2)
1 + l

(2)
2 , dropping
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the t variable which scales trivially under l(1), and identifying s with x5 allows to deform

the del Pezzo singularity to a generic quintic.

Let us analyze the Calabi-Yau obtained after transition I in more detail. As seen from

l(2) the toric variety is P(OP3 ⊗O(−K)P3). We have the following topological data for the

manifold: χ = −176, h(1,1) = 2 and

[c2]1 = 44 , [c2]2 = 50 , κ111 = 2 , κ112 = κ122 = κ222 = 5 , (A.2)

where [c2]i =
∫

M c2∧ωi and κijk =
∫

M ωi∧ωj∧ωk as in (5.2) and (5.3). It is also instructive

to list the genus zero BPS invariants for the rational curves ni,j, because we see here the

27 lines of the Ê6 del Pezzo in the class (1, 0), which corresponds to the class −K.

ni,j for trans. I :

i j=0 j=1 j=2 j=3 j=4 j=5 j=6

0 0 60 0 0 0 0 0

1 27 2515 12210 12210 2515 27 0

Let us next turn to the transition II listed in the table above. After this transition the

polynomial is of the form

P = x0

4
∑

k=0

rkp4−k(v)qk+1(u) . (A.3)

We have now a singularity at r = 0, which is a P
1 bundle over a curve of genus 3. It has

been analyzed in [61, 72], where it has been argued that it can be deformed to isolated

16 P
1, i.e. 16 conifolds. This manifold is a K3 fibration with the topological data χ =

−168, h(1,1) = 2 and

[c2]1 = 50 , [c2]2 = 24 , κ111 = 5 , κ112 = 4 . (A.4)

For this Calabi-Yau manifold the BPS instantons are as follows

ni,j for trans. II :

i j=0 j=1 j=2 j=3 j=4 j=5 j=6

0 0 16 0 0 0 0 0

1 640 2144 120 -32 3 0 0

In particular we see that n0,1 = 16 which corresponds to the configuration which can be

deformed to 16 conifolds.

Finally, we turn to the transition III for which both points ν6, ν7 are added. This leads

to a polynomial of the form

P = x0

2
∑

k=0

tks2−k
k+2
∑

l=0

rlp2+k−l(u)ql+1(v) . (A.5)

We see that at t = 0, s = 1 there is a non-generic del Pezzo singularity, while at r = 0 there

is a degenerate version of the P
1 bundle over a curve of genus 3, which can be deformed to

12 isolated P
1’s, i.e. 12 conifolds. Again this manifold is a K3 fibrations with

χ = −152 , h(1,1) = 3 , [c2]1 = 24, [c2]2 = 50 , [c2]3 = 44 , (A.6)
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quintic trans. I trans. II trans. III

l(1) l
(2)
1 l

(2)
2 l

(3)
1 l

(3)
2 l

(4)
1 l

(4)
2 l

(4)
3

x′
0 -3 -1 -2 -1 -1

x0 -5 -3 -2 -2 -1 -1 -1 -1

ν1 =( -1, 0, 0, 0 0) w1 1 1 0 1 0 1 0 0

ν2 =( 0, -1, 0, 0 0) w2 1 1 0 1 0 1 0 0

ν3 =( 0, 0, -1, 0 0) w3 1 1 0 1 0 1 0 0

ν4 =( 0, 0, 0, -1 0) s 1 0 1 1 0 0 1 0

ν5 =( 1, 1, 1, 1 0) w4 1 1 0 1 0 1 0 0

ν6 =( 0, 0, 0, 1 0) t -1 1 -1 1 0

ν7 =( 0, 0, 0, 0 1) u 0 1 0 0 1

ν8 =( 0, 0, 0, 0 -1) v 0 1 0 0 1

Table 7: Transitions from the quintic to a K3 fibration with Ê6 del Pezzo and 32 conifolds.

and the non-vanishing triple intersections

κ111 = κ113 = 2 , κ112 = κ122 = κ222 = 5 , κ123 = κ223 = 4 . (A.7)

The genus zero BPS instantons n0,i,j, n1,i,j and n2,i,j are given by

n0,i,j for trans. III :

i j=0 j=1 j=2 j=3 j=4 j=5 j=6

0 0 12 0 0 0 0 0

0 50 12 -2 0 0 0 0

n1,i,j for trans. III :

i j=0 j=1 j=2 j=3 j=4 j=5 j=6

0 10 16 1 0 0 0 0

1 540 1920 76 -24 3 0 0

2 1396 10064 1035 -440 198 -48 0

A.2 K3 fibration with Ê6 del Pezzo and 32 conifolds

In this appendix we present the toric analysis of the Calabi-Yau space used in section 5.

The geometric construction of this example has been discussed by Malyshev in ref. [65].

Our investigation will follow a similar logic as in appendix A.1 and we will likewise start

with the quintic in P
4. Again in the table polyhedron of P

4 is the four simplex given the

convex hull by the points ν1, . . . , ν5 in R
4, i.e. with the last entry dropped. The transition

I to the Calabi-Yau with the Ê6 del Pezzo singularity is exactly as in appendix A.1. Since

we like to study latter a transition to a complete intersection in a five dimensional space

given by a five dimensional polyhedron we added a trivial fifths coordinate to the first six

points.

Let us turn to the transition II. The l(3) are the scalings for a conifold transitions after

generating 36 nodes. The two polynomials P and P ′ are defined by the l(3) requiring that

x0P and x′
0P are invariant under the (C∗)2 actions. The same is true for the transition
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III. We have the following topological data for the manifold after the transition II. It is a

K3 fibration with χ = −128, h(1,1) = 2 and

[c2]1 = 50 , [c2]2 = 24 , κ111 = 5 , κ112 = 6 , κ122 = κ222 = 0 , (A.8)

with a notation as in (5.2) and (5.3). From the genus zero BPS invariants for the rational

we see the homologous 36 P
1 blow-ups of the nodes in the class (0, 1) as expected.

ni,j for trans. II :

i j=0 j=1 j=2 j=3 j=4 j=5 j=6

0 0 36 0 0 0 0 0

1 366 1584 909 16 0 0 0

2 2670 73728 255960 231336 45216 360 -20

Finally, we can analyze the transition III. The resulting Calabi-Yau manifold and with

a candidate orientifold projection has been studied in section 5. In the toric set-up we

now have the scalings l(4) which correspond to performing both transitions simultaneously.

We get a K3 fibration with topological data as in (5.2) and non-vanishing triple intersec-

tions (5.3). The BPS invariants n0,i,j, n1,i,j and n2,i,j are given by

n0,i,j for trans. III :

i j=0 j=1 j=2 j=3 j=4 j=5 j=6

0 0 32 0 0 0 0 0

0 28 32 0 0 0 0 0

n1,i,j for trans. III :

i j=0 j=1 j=2 j=3 j=4 j=5 j=6

0 10 16 1 0 0 0 0

1 310 1408 781 16 0 0 0

2 310 4064 6418 1408 10 0 0

A.3 Example with Ê7 and Ê6 del Pezzo

In this appendix we present a compact Calabi-Yau example with an Ê7 and Ê6 del Pezzo

which are in topological relation by intersecting non-trivially. We also start with the quintic

and add the point ν6 as in the following table.

At t = 0 we get an Ê7 del Pezzo. The topological data after the transition I are

χ = −164, h(1,1) = 2 and

[c2]1 = 42 , [c2]2 = 50 , κ111 = 3, κ112 = κ122 = κ222 = 5 . (A.9)

In the first table summarizing the BPS instantons we see n1,0 = 56, which indicates the

class with the 56 lines of the Ê7 del Pezzo.

i j=0 j=1 j=2 j=3 j=4 j=5 j=6

0 0 20 0 0 0 0 0

1 56 2635 5040 190 -40 3 0

After the transition II to the Calabi-Yau defined by l
(3)
k we have an elliptic fibration

with χ = −168, h(1,1) = 2 and

[c2]1 = 50 , [c2]2 = 36, κ111 = κ112 = 5, κ122 = 3 . (A.10)

We find the BPS number n0,1 = 18 in the following table
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quintic transition I transition II transition III

l(1) l
(2)
1 l

(2)
2 l

(3)
1 l

(3)
2 l

(4)
1 l

(4)
2 l

(4)
3

-5 x0 -4 -1 x0 -3 -2 x0 -2 0 -1

ν1 =( -1, 0, 0, 0) x1 1 u 2 -1 u1 0 1 u1 1 0 -1

ν2 =( 0, -1, 0, 0) x2 1 w1 1 0 u2 0 1 v1 0 1 0

ν3 =( 0, 0, -1, 0) x3 1 w2 1 0 v1 1 0 v2 1 -1 0

ν4 =( 0, 0, 0, -1) x4 1 w3 1 0 u3 0 1 s 0 1 0

ν5 =( 1, 1, 1, 1) x5 1 s 0 1 v2 1 0 u2 0 0 1

ν6 =( -2, -1, -1, -1) t -1 1 t -1 1 1

ν7 =( -1, -1, 0, -1) r 1 -1 r 1 -2 0

Table 8: Transitions from the quintic to a CY threefold with Ê6 and Ê7 del Pezzos.

ni,j for trans. II :

i j=0 j=1 j=2 j=3 j=4 j=5 j=6

0 0 18 -2 0 0 0 0

1 186 2439 442 -512 768 -1024 1280

In the following we will generate an Ê7 and Ê6 del Pezzo by considering both transitions

simultaneously. After this transition III we find likewise an elliptically fibered Calabi-Yau

space

χ = −148 , h(1,1) = 3 , [c2]1 = 78, [c2]2 = 36, [c2]3 = 50 , (A.11)

and the non-vanishing triple intersections

κ111 = 21 , κ112 = 9 , κ122 = κ223 = 3 , κ113 = 18 ,

κ123 = 8 , κ133 = 10 , κ233 = κ333 = 5 . (A.12)

The BPS invariants n0,i,j, n1,i,j, n2,i,j and n3,i,j are given by

n0,i,j for trans. III :

i j=0 j=1 j=2 j=3 j=4

0 0 16 0 0 0

1 0 0 0 0 0

n1,i,j for trans. III :

i j=0 j=1 j=2 j=3 j=4

0 12 154 16 -2 0

1 10 16 1 0 0
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n2,i,j for trans. III :

i j=0 j=1 j=2 j=3 j=4

0 -2 16 154 12 0

1 32 2279 4392 130 -32

2 -2 -32 -20 0 0

n3,i,j for trans. III :

i j=0 j=1 j=2 j=3 j=4

0 0 0 16 148 16

1 -64 528 48158 86440 4291

2 12 346 2600 1794 128

Here the 56 of E7 which appeared after transition I in the class (1, 0) is now splitted

by the class (1, 1, 0), i.e. n1,0,0 = 12, n2,1,0 = 32 and n3,2,0 = 12. This corresponds to

the splitting SO(12) × SU(2) ⊂ E7 under which the representation 56 decomposes into

56 = (12,2) + (32,1) [67]. In the class (1, 1, 0) are n1,1,0 = 10 rational curves. As can be

seen from the above table these seem to be part of the 27 = 10 + 16 + 1 curves of an Ê6

del Pezzo singularity which provides in this example the hidden singularity.

B. Del Pezzo transitions M
g

k
→ M

g

k+1

In section 4.3 we briefly discussed a del Pezzo transition starting with the hypersurface

P(18|9, 6, 1, 1, 1). Such del Pezzo transitions are in fact ubiquitous in toric Calabi-Yau

transitions. In particular, there are whole chains of transitions in which up to five Ê6, Ê7

or Ê8 del Pezzo surfaces can be blown up respectively. The corresponding discrete family

of 18 reflexive polyhedra ∆g
n in 4d is the the convex hull of the points

( −1, 0, 0, 0)

( 0, −1, 0, 0)

(mg

1, mg

2, 1, 0)

(mg

1, mg

2, 0, 1)

(mg

1, mg

2, ν
(0)
1 , ν

(0)
2 )

(mg

1, mg

2,
...,

...)

(mg

1, mg

2, ν
(n)
1 , ν

(n)
2 )

with

ν(0) = (−1,−1)

ν(1) = (0,−1)

ν(2) = (−1, 0)

ν(3) = (1, 1)

ν(4) = (1,−1)

ν(5) = (−1, 1)

and

mE8 = (3, 2)

mE7 = (2, 1)

mE6 = (1, 1) .

(B.1)

For rank(g) > 5 these d = 4 polyhedra define hypersurfaces specified by the anti-canonical

bundle in the in toric variety and thus appear in the list [73]. For rank(g) < 6 one

finds complete intersections associated to the nef partitions of toric varieties associated to

reflexive polyhedra with d > 4.

The to (B.1) corresponding compact Calabi-Yau manifolds are generically smooth el-

liptic fibrations over a del Pezzo base. In this fibration the worst degeneration of the fiber

is of Kodaira type I1 [74]. Let us denote the type of the elliptic fibration by the Lie algebra

g and the corresponding elliptic fibered Calabi-Yau over Bn as Mg
n. As an collorary to

the analysis of the elliptically fibered Calabi-Yau fourfolds [75], one finds that the Euler

number of the elliptic fibration Mg
n is given by

χ(Mg

n) = −2h(g)

∫

Bn

c2
1 = 2h(g)(n − 9), (B.2)
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here h(g) is the coxeter number of the associated Lie algebra. h(g) has been listed in

table 3. For the smooth fibration spaces just described, n + 1 Kähler classes of Mg
n come

from the del Pezzo base Bn and 8 − rank(g) come from the 8 − rank(g) sections of the

elliptic fiber. Using χ = 2(h(1,1) − h(2,1)) one infers

h(1,1)(Mg

n) = n + 10 − rank(g) , (B.3)

h(2,1)(Mg

n) = h(g)(9 − n) + n + 10 − rank(g) .

Many of the Mg
n have already appeared in the physics literature as, for example, in refs. [59,

76, 77]. In section 4.3 we discussed the transition ME8
0 → ME8

1 .
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